НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

Жизнь и смерть звезд

Современная теория эволюции, т. е. жизненного пути звезд, опирается на теорию их внутреннего строения и источники звездной энергии. Она опирается на физические теории: термодинамику, гидродинамику, ядерную физику, теорию излучения и его переноса и т. д., а для получения числовых результатов требует обширных вычислений. С пятидесятых годов последние очень облегчились с введением в практику быстродействующих электронных счетных машин.

Возникнув как сгущение в газово-пылевой среде, звезда имеет своим единственным источником энергии гравитационное сжатие, пока температура в центре не достигнет значения, при котором начинается термоядерная реакция превращения водорода в гелий. Уже давно было подсчитано, что у массивных звезд эта стадия занимает сотни тысяч лет, а у звезд с массой, меньшей чем у Солнца, эта стадия тянется сотни миллионов лет.

Когда температура центральной области уже достаточна для того, чтобы выделение энергии ядерных реакций компенсировало охлаждение звезды с поверхности, сжатие ее прекращается. Это равновесие прихода и расхода тепла наступает при тем большей температуре, чем масса звезды больше. Выход энергии ядерных реакций, как уже говорилось, очень сильно зависит от температуры. Этим и объясняется наблюдаемый рост светимости с массой звезды (если говорить об основной массе звезд).

Для дальнейшего важно, сохраняется ли достаточно постоянной масса звезды и есть ли в ней перемешивание вещества (конвекция), при котором топливо (водород) все время поступает из внешних частей к ядру, где оно «сгорает».

В 1942 г. Чандрасекар и Шенберг сделали важный шаг дальше. Приняв, как делают и сейчас, с достаточным основанием, что масса звезды постоянна, а перемешивания нет, они заключили, что вместо «сгоревшего» в центре водорода возникает гелиевое ядро, все время растущее. Светимость звезды при этом должна возрасти в 2 1/2 раза к той эпохе, когда масса гелиевого ядра достигает 10% от полной массы. Водород выгорает долго: у массивных звезд сотни тысяч лет, у звезд с массой Солнца - несколько миллиардов лет. Ввиду этого большинство звезд на этой стадии мы и застаем.

Важным и неожиданным был результат расчетов М. Шварцшильда и Сандейджа в 1952 г. Они нашли, что гелиевое ядро, лишившееся источников энергии, станет сжиматься, а внешние слои будут расширяться. Энергия будет поступать только из тонкого водородного слоя вокруг ядра. При надлежащем подъеме температуры в ядре наступит реакция, при которой три ядра атома гелия превращаются в ядро атома углерода, и эта новая выделяющаяся энергия питает .звезду, превращающуюся в красного гиганта (или сверхгиганта!). Это превращение идет тем быстрее, чем больше масса звезды.

Для сравнения данных теории с наблюдениями надо обратиться к диаграмме Герцшпрунга - Рессела (сокращенно - диаграмме Г - Р), иначе говоря, к диаграмме спектр (или цвет, или температура поверхности) - светимость. Мы о ней говорили уже вскользь в разделе «Перепись звездного населения на диаграмме светимостей - спектров». Эта перепись вместе с кривой, связывающей массы и светимости звезд, является важнейшим обобщением наблюдений - картиной существующих сочетаний основных физических характеристик звезд. Теории звездной эволюции должны ей удовлетворять. На рис. 152 схематически полосами изображено расположение звезд основных последовательностей, которые выявлены в общей массе изученных звезд. При этом по горизонтальной оси вместо спектров или температур отложен показатель цвета - разность звездной величины звезды в синих и в визуальных лучах. Использование фотоэлектрических фотометров позволило очень точно измерять эти величины. Очень важно, что их этим способом можно измерять и у очень слабых и далеких звезд. Увеличение точности измерения цвета звезд сыграло огромную роль в развитии теории звездной эволюции. Положение звезды на диаграмме должно зависеть от ее массы, начального химического состава и возраста.

Мы видим, что диаграмма Г - Р стала гораздо сложнее, чем казалось сначала. На помощь теории эволюции звезд пришло изучение яркости и цвета звезд в разных рассеянных и шаровых скоплениях.

На рис. 194 представлена знаменитая, классическая сводная диаграмма, составленная Сандейджем в 1957 г. по наблюдениям ряда рассеянных и шарового скоплений. Названия их указаны.

Рис. 194. Диаграмма Сандейджа для звездных скоплений
Рис. 194. Диаграмма Сандейджа для звездных скоплений

Мы видим, что все скопления имеют в нижней части диаграммы Г - Р общую главную последовательность звезд (отмечено, где на ней находилось бы наше Солнце). Но верхние концы последовательности в каждом скоплении простираются неодинаково далекой все отклоняются вправо, причем ответвление вправо происходит при разной абсолютной величине (при разной светимости) и при разных значениях показателя цвета.

Обратим внимание, например, на то, что скопления χ и h (хи и аш) Персея, имеющие очень яркие голубые звезды (слева вверху), имеют еще и ветвь красных сверхгигантов (справа вверху), что ярчайшие голубые звезды Плеяд менее ярки, а в NGC 752 совсем слабы и не голубые, а желтоватые. Правая ветвь у М 67 сильно отличается от остальных и сходна больше с ветвью для шарового скопления М 3. Все это крайне важно потому, что звезды одного скопления занимают малый объем и возникли из единого облака газа, а поэтому должны были иметь одинаковый начальный химический состав. Возраст звезд скопления должен быть примерно одинаковым. Спасибо природе за существование звездных скоплений. Они заменили астрономам лаборатории, в которых физики создают известные им условия и не допускают воздействия на вещество слишком многих факторов сразу.

С другой стороны, теория позволила вычислить положение на рис. 194 теоретической линии главной последовательности для недавно образовавшихся звезд (линия «нулевого возраста» или линии начальной главной последовательности), а также линии для звезд в возрасте одного и пяти миллиардов лет. Большинство ближайших к нам звезд оказывается тогда моложе пяти миллиардов лет, так как на диаграмме Г - Р они лежат левее кривой, соответствующей 5•109 лет.

На рис. 195 показаны на диаграмме Г - Р теоретические кривые Шварцвальда, соединяющие звезды равного возраста (108 лет, 2•108 лет и т. д.) и эволюционные пути (треки) звезд разной массы - от 2,5 до 5 масс Солнца. По вертикальной оси отложен логарифм светимости, по горизонтальной оси логарифм температуры, которая вместо цвета используется при подлинных расчетах.

Рис. 195. Теоретические треки звезд
Рис. 195. Теоретические треки звезд

Но на кривых для звездных скоплений на рис. 196 различие положений звезд одного скопления должно зависеть только от их массы, а различия между кривыми разных скоплений должны зависеть от различия возраста и начального химического состава.

Более массивные и более яркие звезды быстрее сжигают водород, и их жизнь короче, а звезды, подобные Солнцу, остаются на главной последовательности около 5 млрд. лет, тогда как звезды, в 10 раз более массивные - в 1000 раз меньше. Это объясняет различие высоты верхнего конца главной последовательности у разных рассеянных скоплений.

У очень молодого скопления звезды находятся на главной последовательности. С возрастом скопления более массивные звезды первыми покидают главную последовательность и смещаются на диаграмме вправо, как показывает рис. 194. Так, со старением скопления верхний уровень главной последовательности постепенно понижается. Этот возраст определяется временем нахождения звезды верхнего конца на главной последовательности. Иначе говоря, он определяется положением точки, где звезды начинают отклоняться вправо от главной последовательности.

Таким образом находят, что скопление NGC 2362 моложе миллиона лет, Плеядам около 20 млн. лет, а М 67 и М 3 более 10 млн. лет.

После того как звезды оставляют главную последовательность, они, по теории, перемещаются вправо в область красных гигантов или сверхгигантов, в зависимости от их массы. В каждом скоплении красные гиганты или сверхгиганты имеют светимости такие же, какова светимость звезд, начавших покидать главную последовательность и смещаться вправо. Зто соответствует замене водородного ядра звезды гелиевым.

Но между смещенным концом главной последовательности и звездами-гигантами виден перерыв, пробел. Он называется пробелом Герцшпруыга, впервые его заметившим. Этот перерыв велик у молодых рассеянных скоплений с горячими звездами и тем меньше, чем рассеянное скопление старее и чем холоднее и слабее его самые яркие звезды. Это объясняется тем, что массивные яркие звезды быстро переходят в состояние красных гигантов и застать их поэтому в промежуточном состоянии трудно. Мало массивные звезды переходят в ото состояние медленнее и для них пробел Герцкшрунга сокращается. У шарового скопления М 3 этого пробела нет совсем. Отклонение от главной последовательности для М 3 происходит уже у звезд, имеющих абсолютную звездную величину +4m, т. е. лишь вдвое более ярких, чем наше Солнце.

Различие начального химического состава сказывается в следующем. Диаграммы Г - Р у шарового скопления М 3 и очень старого рассеянного скопления М 67 очень сходны и возраст их близок, так как. главные последовательности их кончаются в одной точке, около М=+4m. Однако, в М 67 красные гиганты в. 10 раз слабее, чем в М 3.

Количественный химический анализ по спектрам показывает, что звезды в гало (в ореоле или короне) Млечного Пути и шаровые скопления раз в 100-500 беднее металлами, чем звезды, образующие диск Галактики. Это делает их атмосферы более прозрачными. Их излучение приходит к нам поэтому из более глубоких и горячих слоев и они белее и ярче, чем звезды, более богатые металлами, находящиеся в той же области диаграммы Г - Р.

Итак, оказывается, что рассеянные скопления и звезды, подобные находящимся в них, непрерывно образовывались в течение 10 млрд. лет, тогда как шаровые скопления и звезды галактической короны все возникли раньше, более 10 млрд. лет назад. (Некоторые оценивают их возраст даже в 1011-1013 лет.)

Такая связь между возрастом звезд и их положением в Галактике показывает, что когда Галактика была молода, звезды возникали во всем ее сферическом объеме и так же был распределен газ, из которого они сконденсировались. В дальнейшем вращение Галактики сплющивало массу находящегося в ней газа; он оседал к галактической плоскости, превращаясь в диск, и в нем продолжалось формирование звезд, тогда как в ореоле Галактики им стало уже не из чего образовываться.

Галактика до возникновения в ней звезд была газовой и содержала почти исключительно водород. Более тяжелые элементы могли возникнуть только в процессе ядерных реакций в недрах звезд и конвекцией выносились в их внешние слои. Выброс газов с их поверхности, особенно при катастрофических вспышках, обогащал галактические газы тяжелыми элементами. Поэтому звезды, возникшие позднее в диске, содержат больше тяжелых металлов.

Теперь легче понять диаграмму Г - Р наиболее молодых скоплений, таких как М16 (иначе NGC 6611), с возрастом всего лишь 200 000 лет, которые моложе, чем человечество! (Последнее возникло около 1 500000 лет назад.) На главной последовательности этого скопления лежат горячие звезды, классов примерно от АО до О5, а более слабые и холодные находятся правее, выше нулевой главной последовательности. Но это очень молодые звезды, еще продолжающие гравитационное сжатие. По последней теории японского астронома Хаяши можно вычислить время, необходимое звезде, чтобы она могла при данной массе, сжимаясь, дойти до радиуса и светимости, соответствующих данной последовательности. Среди таких молодых звезд много переменных типа RW Возничего и звезд с яркими линиями в спектре. Эти факты рассматриваются как признаки неустойчивости, проявляющейся при гравитационном сжатии.

После достижения звездами стадии красных гигантов, когда в их ядре идет выгорание гелия, звезды переходят на диаграмме опять налево, образуя более пологую последовательность. По новым расчетам Кипенхана это движение их сложно, с временными возвращениями по диаграмме назад; звезды эволюционируют с различной скоростью на разных участках этого пути. В некоторых областях они при этом на время становятся пульсирующими звездами - цефеидами разных периодев. Более массивные, бывшие когда-то яркими звездами спектрального класса В, становятся долгопериодическими цефеидами большой светимости, а менее массивные становятся корот-копериодическими цефеидами, особенно характерными для некоторых шаровых скоплений, и имеют периоды короче суток. Их светимость меньше. Наблюдался случай, когда переменность цефеиды почти сразу прекратилась. Цефеиды заполняют пробелы на диаграмме Г - Р, где нет обычных звезд. Это зоны неустойчивости в эволюции звезд.

Еще не все на диаграмме Г - Р ясно; требуются дополнительные наблюдения и расчеты. В частности, неуверенность есть в более поздних путях эволюции звезд. Предполагают, что, исчерпав весь гелий, звезда быстро сжимается - в этой фазе эволюции звезду трудно найти. Она не имеет уже источников энергии и превращается в крайне плотный белый карлик. Белый карлик расходует так мало энергии, что в этом состоянии может прожить много миллиардов лет и является, как шутят ученые, «горячим трупом». Неясно, может ли звезда уплотниться больше, чем белый карлик. Некоторые допускают, что он может превратиться в нейтронную звезду.

Но судьба превратиться в белого карлика возможна лишь для звезд с массой, меньшей чем 1,4 массы Солнца. При большей массе белый карлик неустойчив и, может быть, взрывается, как сверхновая звезда, что было бы концом более массивных звезд. А может быть, они неоднократно взрываются, как новые звезды, и, сбрасывая этим излишек массы, тоже превращаются в белые карлики.

Заметим, что мы не знаем пока ни одной «потухшей» звезды. Самые холодные из известных, инфракрасные звезды, не могут быть угасающими звездами. По всем признакам они еще будут разогреваться.

Из всего сказанного нами выше уже ясны современные представления о возникновении галактик. Вероятно, раньше Метагалактика являлась огромнейшим уплотненным облаком водорода, в котором одновременно шел распад на меньшие облака и их взаимное удаление со скоростью, убывающей по мере удаления. Неоднородности в облаках вели к гравитационной конденсации газа в звезды внутри сферических объемов. Так возникали эллиптические галактики. Их звезды теперь стары и бедны металлами. При наличии более быстрого вращения газовая масса, обогащаемая тяжелыми элементами, поступающими из старых звезд, сплющивалась. Возникали сжатые галактики с их диском, в котором рождались звезды более молодые и более богатые металлами. Вероятно, не без участия магнитного поля газ в диске концентрировался вдоль спиральных ветвей, выходящих из ядра, где процесс звездообразования шел наиболее интенсивно и где он продолжается и сейчас тем заметнее, чем там больше осталось газа. Таковы спирали «поздних типов» и неправильные галактики. В последних, как в Большом Магеллановом Облаке, есть молодые шаровые скопления, у которых диаграмма Г - Р более похожа на диаграммы рассеянных скоплений. Старые рассеянные скопления нашей Галактики с диаграммами, похожими на диаграммы старых шаровых скоплений, находятся далеко от плоскости Галактики. Там они меньше разрушались под действием притяжения проходящих звезд и, имея сами много звезд, были более устойчивы. Их звезды, расходясь, пополняют звездное население диска, а выбросы газов звездами дают материал для все нового, но уже замирающего звездообразования. Многое в картине развития миров нам еще не ясно.

Все сказанное рисует нам теперь, хотя и без подробностей, картину образования миров, своеобразный круговорот, в котором участвуют и газы, и метеориты, и звезды; одни миры в бесконечной Вселенной зарождаются, другие гибнут, давая материал для нового цикла грандиозных изменений в природе.

При этом развитие и круговорот, конечно, не представляют собой бесконечное повторение пройденного. В соответствии с ленинским учением мы можем представлять себе это вечное развитие и круговорот материи подобным движению по спирали. Но это развитие, как мы должны также помнить, происходит диалектически, в борьбе противоречий, нередко скачками.

Человеческое знание за срок, ничтожно короткий в сравнении с циклами развития мировых тел, проникло в тайны их строения и развития. Мы можем сказать словами поэта:

 «Наши очи малы, 
 Но безбрежность мира 
 Меряют собою 
 И в себе вмещают...»

(Н. Щербина)

предыдущая главасодержаниеследующая глава










© 12APR.SU, 2010-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь