НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

2. Солнечная активность и верхняя атмосфера

Начнем с влияния на верхнюю атмосферу Земли электромагнитного излучения Солнца. Как уже говорилось, оно оказывает воздействие главным образом на земную ионосферу, т. е. часть верхней атмосферы от высоты 50 - 70 км до нескольких тысяч километров, в. которой имеется достаточное количество ионов и электронов, чтобы изменить распространение электромагнитной волны. Ионизация нейтральных частиц атмосферы вызывается солнечным излучением и поэтому плотность электронов в ней изменяется в зависимости от высоты Солнца над горизонтом, уровня солнечной активности и фазы ее 11-летнего цикла, а также от времени суток и сезона года. Обычно атмосферу делят на четыре области: D, E, F1 и F2. Область D расположена па высоте 50 - 90 км и отличается невысокой электронной плотностью и значительным поглощением радиоволн. Ионизация ее обусловлена прежде всего солнечным излучением в линии 1216 А. Область Е характеризуется высотами 85 - 140 км и высокой электронной плотностью (5 х 103 - 104 см-3 ночью и 1 х 105 - 4 х 105 см-3 днем). Ее ионизация вызывается в основном рентгеновским излучением в интервале длин волн 8 - 104 А. Области F1 и F2 расположены соответственно на высотах 140 - 230 км и 200 - 600 км. Плотность электронов в области FI летом равна 2 х 105 см-3, а зимой - 4 х 105 см-3 и в области F2 - 2 х 105 и 2 х 106 см-3. Основным источником ионизации в этих областях является солнечное ультрафиолетовое излучение в интервале длин волн 300 - 910 А. Заметим, что в полярных районах ионосфера подвержена также воздействию корпускулярных потоков, идущих вдоль геомагнитных силовых линий из магнитосферы Земли. Как вы уже могли заметить, высоты областей ионосферы, как и величина плотности электронов в них, испытывают колебания с течением времени.

Поскольку электронная плотность в областях Е, F1 и особенно F2 сильно зависит от уровня солнечной активности, выражаемого числами Вольфа или плотностью потока радиоизлучения Солнца на волне 10,7 см, увеличиваясь от минимума к максимуму 11-летнего солнечного цикла соответственно в 1,5 - 2 раза и 2,5 - 4 раза, изменяются условия радиосвязи, особенно на коротких и очень длинных волнах. А это имеет практическую важность для всех специалистов, нуждающихся в устойчивой радиосвязи. Учитывая, что увеличение электронной плотности в поглощающем слое приводит к увеличению в нем поглощения, в эпоху максимума 11-летнего цикла солнечной активности целесообразно в коротковолновом диапазоне радиоволн переходить на более короткие волны, а в эпоху минимума цикла - на более длинные. В то же время, в годы максимума 11-летних циклов должна значительно улучшаться радиосвязь на самых длинных волнах (больше 10000 м), распространяющихся путем отражения от нижней границы области Е, поскольку с повышением плотности электронов в ней в это время улучшаются и ее отражательные свойства.

Но помимо постепенных изменений условий радиосвязи, обусловленных ходом 11-летнего цикла солнечной активности, нередко мы сталкиваемся с еще одним (гораздо более неприятным) эффектом воздействия па верхнюю атмосферу электромагнитного излучения Солнца - внезапным затуханием радиосигнала при коротковолновой радиосвязи. Теперь его обычно называют внезапным ионосферным возмущением, до недавнего времени оно было также известно под названием эффекта Деллинджера. Начальная фаза этого явления длится в среднем несколько минут, а общая его длительность составляет около часа. Внезапные ионосферные возмущения вызываются повышенной ионизацией области D ионосферы, виновником которой служит приход рентгеновского излучения с длиной волны меньше 10 А от солнечных вспышек. Повышение ионизации в этом случае влияет также на распространение длинных и очень длинных радиоволн, а также приводит к усилению отражения длинных радиоволн, создаваемых в земной атмосфере грозами (так называемых свистящих атмосфериков).

Гораздо сложнее дело обстоит с воздействием на верхнюю атмосферу корпускулярного излучения Солнца. Прежде всего следует отдавать себе отчет в том, что понятие это, в сущности, сборное, объединенное лишь тем, что речь в нем идет о потоках солнечных частиц. Оно включает в себя по крайней мере три составляющие. Во-первых, это потоки заряженных частиц солнечного ветра. Они обладают сравнительно низкими энергиями (500 - 2000 эВ для протонов и 0,3 - 1 эВ для электронов) и умеренной скоростью (300 - 600 км/с). Во-вторых, это потоки заряженных частиц из активных областей Солнца, в частности, солнечных вспышек. Энергии протонов сильных вспышек могут достигать 20 кэВ, а электронов - 10 эВ, скорости - 3000 км/с. Что же касается частиц протонных вспышек, то они обладают энергиями 10 - 1000 МэВ и скоростями от 10000 км/с до величин, близких к скорости света. Плотность частиц в таких потоках достигает нескольких сотен в 1 см3, т. е. примерно на порядок выше, чем в солнечном ветре. Наконец, в-третьих, это потоки заряженных частиц из рекуррентных униполярных магнитных областей, связанных с корональными дырами. Им присущи энергии 5000 эВ для протонов и несколько эВ для электронов при скорости около 1000 км/с и плотности порядка нескольких десятков частиц в 1 см3.

Необходимо подчеркнуть, что только протоны энергий, характерных для протонных вспышек, в состоянии проникать глубоко в земную атмосферу; что же касается остальных составляющих корпускулярного излучения Солнца, то они недостаточно энергичны, чтобы не быть задержанными магнитным полем Земли, и только после ускорения до необходимых энергий могут попасть в верхние слои земной атмосферы.

Приближаясь к Земле со сверхзвуковой скоростью, поток солнечных частиц, обладающий высокой электропроводностью, вступает во взаимодействие с геомагнитным полем. При этом в нем возникает система индуцированных электрических токов, магнитное поле которых сильно искажает геомагнитное поле. Оно уничтожает магнитное поле Земли внутри потока солнечного ветра и усиливает геомагнитное поле перед фронтом этого потока. В результате в потоке образуется полость, внутри которой расположена Земля со своим магнитным полем. Эту полость называют магнитосферой.

Обращенная к Солнцу граница магнитосферы находится в среднем на расстоянии 10-12 радиусов Земли. При обтекании геомагнитного поля солнечным ветром возникает устойчивая ударная волна, т. с. граница, отделяющая области пространства с существенно различными характеристиками плазмы и магнитного поля. На некотором расстоянии перед ней расположена магнитопауза, которая служит границей магнитосферы и имеет толщину 100 - 200 км. Между ударной волной и магнитопаузой образуется переходная область, отличающаяся турбулентным состоянием вещества и неправильными колебаниями магнитного поля. Магнитогидродинамиче-ское взаимодействие солнечного ветра с геомагнитным полем «сдувает» часть силовых линий с дневной стороны (обращенной к Солнцу) на ночную и; тем самым приводит к образованию хвоста магнитосферы, или геомагнитного хвоста, который можно проследить до 1000 радиусов Земли. Силовые линии этого хвоста по обе стороны от геомагнитного экватора имеют противоположное направление. Около экватора они находятся так близко друг к другу, что могут соединяться, создавая вблизи геомагнитного экватора нейтральный слой, напряженность магнитного поля в котором близка к нулю, а направление перпендикулярно к плоскости геомагнитного экватора. На дневной стороне северной и южной полярных шапок Земли образуются замкнутые воронкообразные области, которые получили название дневных полярных каспов. Они отделяют замкнутые силовые линии на дневной стороне магнитосферы от разомкнутых, уходящих в ее хвост.

Именно процессы, происходящие в нейтральном слое хвоста магнитосферы, определяют возникновение целой группы явлений, называемых авроральными, которые разыгрываются в двух овальных зонах вблизи северного и южного геомагнитных полюсов, так называемых авроральных овалах. Это полярные магнитные бури, или суббури, полярные сияния, ионосферные возмущения. Суббури представляют собой геомагнитные возмущения длительностью 1 - 2 часа, возникающие около полуночи по местному времени и проявляющиеся в бухтообразном падении горизонтальной составляющей геомагнитного поля, на которые накладываются беспорядочные флуктуации поля. Полярные сияния видны в высокоширотных районах Земли и представляют собой изумительное зрелище. Иногда вблизи максимума наиболее мощных 11-летних циклов их наблюдают и на средних широтах. Вид полярных сияний весьма разнообразен, но в общем он сводится к четырем классам спокойным однородным дугам или полосам, лучам, пятнам или поверхностям без определенной формы и вуали, однородному свечению, покрывающему большие участки небосвода. В начале этого раздела мы уже говорили о внезапных ионосферных возмущениях, обусловленных электромагнитным излучением Солнца. Магнитосферные возмущения также приводят к ионосферным возмущениям в высокоширотных районах, которые проявляются в полном прекращении радиосвязи на коротких волнах в ночное время в результате вторжения потоков частиц из хвоста магнитосферы.

Все авроральные явления возникают в результате грандиозного процесса (магнитосферного возмущения), развивающегося в магнитосфере при вторжении высокоскоростного потока частиц солнечного ветра или вмороженного в его плазму магнитного поля, которое имеет составляющую, направленную к югу. При этом пересоединенные силовые линии геомагнитного поля «сносятся» в хвост магнитосферы и там сближаются, что приводит к возрастанию в нем напряженности магнитного поля и, следовательно, к возникновению неустойчивости этого поля. В хвосте происходит бурное пересоединение противоположно направленных силовых линий и перемещение их в сторону Земли. Они увлекают за собой плазму, заполняющую плазменный слой геомагнитного хвоста. Заряженные частицы устремляются вдоль границы между замкнутыми и разомкнутыми силовыми линиями и приходят в авроральные овалы. Перемещаясь из области слабого магнитного поля в хвосте в область сильного вблизи замкнутой магнитосферы, частицы ускоряются. Частицы, получившие наибольшее ускорение, прорываются в замкнутую магнитосферу и образуют там кольцевой электрический ток, вызывающий ослабление геомагнитного поля во время главной фазы магнитной бури. В авроральных овалах эти частицы увеличивают ионизацию ионосферы. Это ведет к поглощению радиоволн в нижних слоях ионосферы и существенному повышению проводимости ионосферы. В результате появляются ионосферные электрические токи, магнитные поля которых регистрируются на земной поверхности. Так возникают возмущения в нижних слоях ионосферы и магнитные бури. Наконец авроральные частицы сталкиваются с атомами и молекулами воздуха, возбуждая их свечение, т. е. полярные сияния.

Сходные более слабые явления возникают и па дневной стороне авроральных овалов. Они связаны с вторжением в ионосферу менее энергичных заряженных частиц через дневные полярные каспы.

До сих пор мы говорили только о полярных магнитных бурях. Между тем магнитная буря обычно наблюдается одновременно на всей Земле, хотя проявления ее в разных местах земной поверхности могут быть неодинаковыми. Особенно простой характер она имеет на низких и средних широтах. Там во время магнитной бури происходит более или менее внезапное падение горизонтальной составляющей геомагнитного поля, которое длится несколько десятков минут. Это главная фаза магнитной бури, за которой следует стадия медленного восстановления геомагнитного поля до нормы, охватывающая иногда несколько суток. Во время сильных магнитных бурь может быть несколько падений горизонтальной составляющей поля, причем главная фаза следующей бури накладывается на фазу восстановления предыдущей. Иногда перед падением горизонтальной составляющей геомагнитного поля отмечается кратковременный ее подъем. Такое явление называют внезапным началом магнитной бури. Если на записях геомагнитного поля его выделить невозможно, бурю относят к магнитным бурям с постепенным началом. Такое разделение бурь на два класса становится еще более четким, если раздельно рассматривать сильные магнитные бури (в основном с внезапным началом), обусловленные вспышечными активными областями, и рекуррентные магнитные бури (обычно с постепенным началом), вызываемые корпускулярным излучением корональных дыр, расположенных над униполярными магнитными областями Солнца. В отличие от вспышечных магнитных бурь, рекуррентные повторяются в те же дни 27-дневного солнечного календаря в течение нескольких солнечных оборотов, а иногда даже 10 - 15 оборотов. Если число первых достигает максимальной величины в эпоху максимума 11-летнего цикла чисел Вольфа, то максимальное число вторых отмечается на его ветви спада, за 2 - 3 года до эпохи минимума.

Обратимся теперь к воздействию на верхнюю атмосферу Земли наиболее энергичных солнечных частиц-протонов, выбрасываемых из Солнца во время протонных вспышек. Эти частицы вызывают возмущения ионосферы, особенно опасные для коротковолновой связи на самых высоких широтах. Это так называемые поглощения в полярной шапке Обычно такое возмущение начинается в среднем через несколько часов после сильной солнечной вспышки, его максимум наблюдается через 1 - 2 суток после его начала, а восстановление может продолжаться около 10 суток. Поскольку протоны таких сильных вспышек беспрепятственно проникают в области D ионосферы, где частота соударений частиц велика, и поглощаются в ней, они вызывают особенно большое поглощение радиоволн именно в этой области. В результате уменьшается интенсивность радиоволн и повышается температура верхней атмосферы. Поглощение в полярной шапке, как правило, приводит к полному прекращению радиосвязи на коротких волнах на несколько суток над Северным Ледовитым океаном и над Антарктидой. Особенно большое число возмущений этого типа отмечают в эпоху максимума 11-летнего цикла или вскоре после него.

Наш рассказ о влиянии солнечной активности на верхнюю атмосферу Земли останется незавершенным, если не сделать из него соответствующих практических выводов. Читатель мог убедиться, что опасности, которые нас ждут в результате этого воздействия, таковы, что они со всей остротой ставят вопрос об особой важности прогнозов солнечной активности для обеспечения устойчивой радиосвязи и безопасной навигации. Такие прогнозы позволили бы успешно прогнозировать нарушения радиосвязи, подготовить обходные радиотрассы, перейти на более выгодные длины волн.

предыдущая главасодержаниеследующая глава










© 12APR.SU, 2010-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь