НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

II. Звезды

Звезды являются небесными телами, подобными нашему Солнцу, однако вследствие их очень большой удаленности от нас они даже в самые мощные телескопы кажутся светящимися точками. При наблюдениях невооруженным глазом можно видеть несколько тысяч звезд, и кажется, что они движутся по небесному своду в обратном направлении вокруг некоторой точки, близкой к Полярной звезде. Однако при этом звезды всегда сохраняют одни и те же положения относительно друг друга, образуя различные созвездия (Большая Медведица, "Малая Медведица, созвездия Кассиопеи, Андромеды и т. д.), которые были известны с глубокой древности. Древние народы полагали, что звезды неподвижно прикреплены к хрустальной сфере, которая вращается вокруг оси, проходящей через Землю и Полярную звезду.

Мы знаем теперь, что эта знаменитая хрустальная сфера в действительности не существует и что движутся не звезды, а сама Земля, совершающая полный оборот вокруг своей оси за одни звездные сутки (несколько меньшие, чем обычные наши сутки).* Видимое движение звезд представляет собой, следовательно, оптическую иллюзию, обязанную вращению Земли в прямом направлении. В самом деле, всякий знает, что когда он из поезда видит, как соседний поезд движется, то (если он не смотрит на рельсы и не ощущает сотрясений) он не в состоянии решить, движется ли в самом деле этот чужой поезд, или же это движется его поезд в обратном направлении.

* (Это положение о вращении Земли, которое в новые века было впервые разработано Коперником, получило неопровержимое экспериментальное доказательство в 1851 г. благодаря знаменитому опыту французского физика Фуко с маятником, установленным внутри парижского Пантеона.)

Число звезд и расстояния до них

С помощью современных мощных телескопов и фотографирования с большой выдержкой мы можем непосредственно наблюдать более миллиарда звезд. Их имеется, конечно, гораздо больше, и можно вычислить, что Млечный путь, эта светлая полоса, пересекающая все ночное небо, состоит примерно из 100 миллиардов звезд.

В некоторых случаях можно определить довольно точно расстояния звезд от Земли. Эти расстояния для различных звезд весьма отличаются друг от друга, но все они чрезвычайно велики. Самая близкая к нам звезда находится на расстоянии, равном примерно четырем световым годам или 40 триллионам километров. Если бы мы захотели изобразить эту звезду на доске с нашей моделью солнечной системы, то надо было бы поместить эту звезду (при сохранении того же масштаба) на расстоянии около четырех километров от центра. Таким образом, наша планетная система действительно является одной из наиболее "занятых" областей вселенной.

Мы говорили выше, что положения звезд относительно друг друга неизменны. Однако в действительности это совсем не так. Было обнаружено, что звезды слегка перемещаются по отношению друг к другу, хотя в силу большой удаленности звезд их видимые перемещения происходят очень медленно. Были вычислены скорости звезд по отношению к солнечной системе, предполагаемой неподвижной. Полученные для скоростей значения составляют около нескольких десятков километров в секунду (скорость Земли в ее движении вокруг Солнца равна 30 км/сек, т. е. примерно 10 000 км/час). Детальное изучение движений звезд показывает, что звезды движутся не как попало и что их скорости по отношению к Солнцу распределяются не случайным образом.

Точные астрономические наблюдения показывают, что созвездия, близкие к созвездию Лиры, как бы растягиваются во все стороны, а созвездия, находящиеся в диаметрально противоположной стороне неба (например, созвездие Большого Пса), как бы сжимаются. Такие изменения вида созвездий легко объяснить эффектом перспективы, вызванным движением Солнца среди звезд.

В самом деле, путнику, идущему по туннелю, кажется, что то отверстие, через которое он вошел, все более и более уменьшается по мере удаления от него, в то время как выход из туннеля, к которому он приближается, вес более и более увеличивается.

Таким путем установили, что солнечная система в целом перемещается по отношению к соседним звездам со скоростью около 20 км/сек в направлении некоторой точки в созвездии Лиры.

Оказалось также возможным определить движения других звезд по отношению к той же системе близких к Солнцу звезд, рассматриваемых как неподвижные. Эти звезды, как и Солнце, имеют вполне заметные движения.

Но являются ли неподвижными эти "соседние" звезды? Совсем нет. Очень далеко от нас находятся гигантские скопления звезд, называемые спиральными туманностями, о которых мы будем вскоре говорить более подробно.. Эти спиральные туманности настолько удалены от нас, что направления на них можно считать почти неизменными. Изучение движений различных звезд Млечного пути и других небесных тел позволило сделать. вывод о том, что местное скопление звезд, к которому принадлежит Солнце, перемещается все в целом по отношению к системе спиральных туманностей, рассматриваемых как неподвижные, описывая круговое движение вокруг оси, проходящей через центр Млечного пути.

Таким образом, астрономы постепенно пришли к следующим выводам:

1. Не небесная сфера вращается вокруг оси, проходящей через центр Земли, но сама Земля вращается вокруг этой оси в противоположном направлении.

2. Не Солнце движется вокруг земного шара, но наш земной шар описывает вокруг Солнца эллипс.

3. Само Солнце не остается неподвижным, но перемещается по отношению к соседним звездам.

4. Скопление, образованное этими близкими к Солнцу звездами, в свою очередь не неподвижно, но все в целом обращается вокруг оси, неподвижной по отношению к известным спиральным туманностям.

Ничто не говорит также в пользу того, что эта последняя система, которую мы посчитали неподвижной, будет рассматриваться таковой завтра, так как известные спиральные туманности, если верить некоторым теориям последнего времени, сами удаляются от нас с исключительно большой скоростью, увеличивающейся пропорционально расстоянию туманностей до нас. Несомненно, этот пример лучше, чем какой-либо другой, иллюстрирует необходимость рассматривать проблему покоя и движения с диалектической точки зрения. Идея об абсолютном движении,* которая была так дорога нашим предкам, не имеет с астрономической точки зрения никакого смысла.

* (Под "абсолютным" движением тела понимают в механике движение этого тела безотносительно к другим телам, т. е. движение тела относительно воображаемого неподвижного мирового пространства. Между тем в философии под "абсолютным" движением понимают, что это движение происходит объективно, независимо от того, познается ли оно нами или нет. Наше познание этого движения лишь относительно, неполно, однако с развитием наших знаний мы все больше приближаемся к познанию абсолютной истины этого движения. (Прим. ред.))

Невозможно думать о движении, не относя его к некоторой "неподвижной системе", и, наоборот, состояние покоя можно представить, лишь сравнивая его с состоянием движения. Этот факт был уже подчеркнут Энгельсом со свойственной ему отчетливостью в книге "Анти-Дюринг": "Всякий покой, всякое равновесие только относительны, они имеют смысл только по отношению к той или другой определенной форме движения. Так, например, известное тело может находиться на земле в состоянии механического равновесия, т. е. в механическом смысле - в состоянии покоя, но это не мешает тому, чтобы данное тело принимало участие в движении земли и в движении всей солнечной системы, как это совершенно не мешает его мельчайшим физическим частицам совершать обусловленные его температурой колебания или же атомам его вещества - совершать известный химический процесс. Материя без движения так же немыслима, как и движение без материи".*

* (Ф. Энгельс, Анти-Дюринг, Госполитиздат, 1951, стр. 57.)

Однако утверждение об относительности движения не должно привести нас к тому выводу, что выбор системы отсчета диктуется только соображениями "удобства" и что можно в конце концов возвратиться в астрономии к прежней точке зрения, согласно которой Земля неподвижна, а звезды и Солнце вращаются вокруг Земли. Напротив, последовательный переход в астрономии от одной системы отсчета к другой (от Солнца к соседним звездам, а затем к далеким спиральным туманностям) соответствовал углублению наших знаний о вселенной. Выражаясь точнее, можно сказать, что если всякое движение является относительным по своему внешнему проявлению, то оно имеет абсолютный характер в силу своей обусловленности определенным законом природы.*

* (Отсутствию какой-либо неподвижной системы небесных тел можно сопоставить невозможность создания модели атома, в которой электроны покоились бы относительно ядра. Таким образом, система может сохранять относительную устойчивость лишь в том случае, если составляющие ее части находятся во взаимном движении. (Прим. ред.))

Двойные звезды

Интересные факты, имеющие большое значение, были открыты благодаря детальному изучению движений звезд и свойств света, излучаемого звездами (спектроскопическими методами).

В частности, было обнаружено существование пар близких друг другу и взаимно притягивающихся звезд (так называемых двойных звезд). Некоторые двойные звезды были обнаружены непосредственно при визуальных наблюдениях в телескоп, но гораздо больше - с помощью спектроскопических методов, и Анри Пуанкаре мог уже в 1911 г. в своих "Лекциях о космогонических гипотезах" утверждать, что из каждых трех звезд одна является двойной. Большинство астрономов в настоящее время полагает, что это отношение на самом деле еще больше и, например, в окрестности Солнца достигает двух третей.

Во многих случаях оказалось возможным весьма детально изучить движения звезд, составляющих пару, относительно друг друга. Полученные результаты показали, что закон тяготения, открытый Ньютоном, действует не только в солнечной системе, но и во всей доступной наблюдениям области вселенной.

Заметим также, что наряду с двойными звездами существуют более сложные системы, состоящие из трех, четырех и большего числа звезд и объединенные в единое целое законом тяготения.

Открытие новых планетных систем

Изучение двойных звезд привело к еще более поразительным результатам: были открыты новые планетные системы. Действительно, в 1943 г. сначала Стрэнд, а затем Рейл и Холмберг обнаружили существование двух новых планетных систем: одной в созвездии Лебедя и другой - в созвездии Змееносца. В обоих случаях изучалась система двойной звезды, в которой наблюдаемое движение одной звезды относительно другой испытывало небольшие отклонения от движения, вычисленного в соответствии с законом тяготения. Изучение этих неправильностей в движении звезд показало, что они обусловлены существованием небесных тел сравнительно небольших размеров, обращающихся вокруг одной из звезд каждой пары. В предположении, что имеется не несколько таких тел, а лишь одно, можно было вычислить, какова должна быть масса этого тела, его расстояние от звезды и период обращения вокруг звезды.

Найденные числа сравнимы с теми, которые характеризуют крупнейшие планеты нашей солнечной системы. Следовательно, мы можем предположить, что небесные тела, о которых идет речь, также являются планетами.

Эти исследования были продолжены, и в настоящее время можно предполагать, что в сфере с радиусом в 17 световых лет и центром в Солнце, содержащей всего тридцать восемь звезд, имеется, кроме нашей, три планетные системы. Были открыты также четыре другие планетные системы, находящиеся на более далеком расстоянии от нас. Но следует при этом заметить, что чем далее мы удаляемся от Солнца, тем труднее становится задача обнаружения планетных систем. Поэтому нет никаких оснований полагать, что относительно большая распространенность планетных систем в окрестности Солнца является исключением из общего правила.

Классификация звезд по их различным характеристикам

а) Массы и размеры. Благодаря изучению двойных звезд астрономы смогли определить массы ряда звезд и установить, что эти массы заключены в пределах между одной десятой массы Солнца и пятьюдесятью массами Солнца.

С помощью иных методов были приближенно определены размеры некоторых звезд. Самый большой радиус, а именно у звезды Возничего,* оказался в несколько тысяч раз больше радиуса Солнца; это значит, что объем этой звезды в несколько миллиардов раз превышает объем Солнца (объем сферы пропорционален кубу ее радиуса). Радиус самых маленьких звезд оказался меньше радиуса Земли, т. е. меньше сотой доли радиуса Солнца, так что объем этих звезд составляет менее миллионной доли объема Солнца.

* (В созвездиях принято обозначать отдельные звезды буквами греческого алфавита. Названия созвездий взяты зачастую из древней мифологии; в ноше время звезды получают помер, под которым они занесены в звездные каталоги. (Прим. ред.))

Если бы все звезды были по плотности близки к плотности Солнца, то их массы также должны были бы меняться в пределах от одной миллионной доли массы Солнца до нескольких миллиардов масс Солнца. Однако, как мы отметили выше, таких колебаний совсем нет. Масса самых больших по своим размерам звезд превышает массу Солнца не в несколько миллиардов, а всего лишь в десять-двадцать раз. Следовательно, вещество, из которого состоят эти звезды, находится в очень разреженном состоянии. Рассуждая аналогичным образом, мы придем к выводу, что вещество, из которого состоят самые маленькие звезды, должно находиться в очень плотном состоянии.

Таким образом, различают звезды-гиганты, имеющие очень большие размеры, значительную массу, но очень малую плотность, и звезды-карлики, имеющие небольшой радиус, сравнительно малую массу, но очень большую плотность.

Для уточнения этой классификации астрономы различают среди звезд-гигантов так называемые сверхгиганты и "обычные" гиганты, а среди звезд-карликов - так называемые субкарлики, "обычные" карлики и, наконец, белые карлики - наиболее плотные из известных звезд. Изученном последних много занимался американский астроном Койпер. Белый карлик, открытый Койпером в 1934 г., состоит из вещества, плотность которого в 6500 раз больше средней плотности Земли: кубический дециметр такого вещества должен весить около 36 000 тонн, в то время как кубический дециметр вещества Земли весит в среднем около пяти с половиной килограммов. Но Койпер, а также Лейтен открыли белые карлики, плотность которых еще в сотни раз больше.

Заметим, что Солнце относится к "обычным" карликам.

б) Физическое строение и светимость.Благодаря методам спектроскопии астрономы смогли составить довольно точное представление о физическом строении звезд, которое в общем подобно строению Солнца. Помимо этого, оказалось возможным оценивать температуру внешних слоев звезд, т. е. тех слоев, которые излучают свет. Полученные значения температуры колеблются между 1700° для красных звезд, являющихся наиболее холодными, и несколькими десятками тысяч градусов для голубых звезд, являющихся самыми горячими. Различают также промежуточные типы звезд: оранжевые, желтые и белые, расположенные между двумя крайними типами в порядке возрастания их температуры. Заметим, что различие в цвете, по которому классифицируются звезды в астрономии, заметно и при наблюдении невооруженным глазом. Солнце является желтой звездой.

Что касается температуры внутри звезд, то согласно самым последним теориям она достигает многих миллионов градусов. До недавнего времени такие температуры были недостижимы в земных условиях. Только в реакциях, происходящих при взрывах атомных и водородных бомб, развиваются температуры в миллионы градусов.

Зная температуру звезды и количество света, доходящего от нее до нас, легко вычислить общее количество лучистой энергии, излучаемой звездой за определенный промежуток времени. Можно определить таким образом так называемую светимость или абсолютную яркость звезды. Сравнивая светимость различных звезд, например, со светимостью Солнца, можно ввести новую их классификацию. Звезды наибольшей светимости излучают в пространство в сотни тысяч раз больше света, чем Солнце. С другой стороны, имеются также звезды, абсолютная яркость которых в 10 000 раз меньше яркости Солнца.

Рис. 3. Диаграмма Рессела
Рис. 3. Диаграмма Рессела

в) Диаграмма Рессела. Вполне естественными были попытки найти связь между указанными различными характеристиками звезд. В 1912-1913 гг. американский астроном X. Р. Рессел и голландский астроном Герцшпрунг обнаружили связь между цветом звезд, т. е. их поверхностной температурой, и их абсолютной яркостью. Полученные результаты Рессел представил в виде диаграммы, которая была уточнена в ходе многочисленных позднейших работ. На этой диаграмме (рис. 3) по горизонтали нанесены значения температур, убывающие слева направо от 30 000 до 2500°. По вертикали нанесены абсолютные яркости звезд, причем абсолютная яркость Солнца принята за единицу. Каждой звезде соответствует на диаграмме точка, расстояние которой от левого края диаграммы определяется температурой звезды, а от нижнего - абсолютной яркостью звезды.

Таким образом, если у нас имеется диаграмма Рессела, на которой нанесены положения различных звезд, то мы можем узнать, какова температура этих звезд, проводя вертикальные прямые через соответствующие точки на диаграмме и замечая, где пересекаются эти прямые с нижним краем диаграммы. Обратившись к рис. 3, мы видим, например, что Солнце имеет температуру, равную примерно 6000°. Одна же из самых ярких звезд ночного неба - Капелла - имеет температуру около 5000°. Аналогичным образом можно узнать по диаграмме Рессела абсолютную яркость звезд, проводя через соответствующие точки горизонтальные прямые. Как мы уже отмечали, абсолютная яркость Солнца принята за единицу. Капелла имеет абсолютную яркость, превышающую 100 единиц (а именно 130).

Глядя на диаграмму, можно сразу заметить, что точки, представляющие положения звезд на диаграмме, образуют некоторое число линий, соответствующих различным группам звезд. По диагонали таблицы располагается линия, идущая из правого нижнего края к левому верхнему. Верхняя часть этой линии соответствует наиболее ярким белым и голубым звездам; все остальное - классу карликов. Две линии, расположенные правее и выше этой диагонали и идущие более или менее горизонтально, соответствуют классам гигантов и сверхгигантов. Мы видим, что светимость звезд этих двух классов довольно мало зависит от их цвета и температуры. Для звезд же, расположенных па диагонали диаграммы, имеет место вполне отчетливое уменьшение светимости с уменьшением температуры. Тем же свойством обладают и субкарлики.

В левом нижнем углу диаграммы помещаются белые карлики. Долгое время считали, что белые карлики не подчиняются какому-либо определенному закону распределения. Однако в 1946 г. советский астроном П. П. Паренаго обнаружил возможность построить для белых карликов две определенные линии, располагающиеся, за исключением их правого конца, довольно близко к горизонтали.

Согласно статистическим подсчетам Койпера подавляющее большинство (95%) наблюдаемых звезд может быть представлено точками, расположенными по диагонали диаграммы. Эта совокупность звезд образует так называемую главную последовательность. Следующей наиболее многочисленной группой являются белые карлики (3%).

Были проведены также исследования связи между массой и светимостью звезд. Эти исследования показали, что, за исключением белых карликов (а также субкарликов), для звезд каждого класса светимость растет одновременно с массой. Эта закономерность особенно отчетливо выражена для звезд главной последовательности. В целях наглядности мы приводим на рис. 3 значения нескольких масс для звезд, принадлежащих главной последовательности и классу гигантов (цифры, обведенные маленькими кружочками, указывают массу звезды по сравнению с массой Солнца, принятой за единицу; например, масса Капеллы составляет 4,2 массы Солнца).

Первые теории эволюции звезд

Весьма специфическое расположение точек, представляющих различные звезды на диаграмме Рессела, очевидно, не является простой случайностью, и астрономы сразу же попытались вывести отсюда законы эволюции звезд.

Сначала предположили, что основная часть звезд рождается в виде голубых гигантов, затем, постепенно охлаждаясь, проходит различные этапы главной последовательности и кончает свой путь в виде угасающих красноватых карликов. Однако ветвь гигантов, открытая в то же время, что и главная последовательность, оставалась вне этой эволюционной схемы. Астроном Локьер предложил поэтому другую схему. Согласно этой схеме звезды рождаются в виде красных гигантов, имея небольшую температуру; затем они начинают сжиматься, и по мере сжатия все более разогреваются и приобретают последовательно все цвета, какие можно наблюдать, например, при раскаливании в горне куска железа. Звезда становится сначала желтой, затем белой и, наконец, голубой, пробегая линию гигантов справа налево. После того как звезда приобретает максимальную температуру (несколько десятков тысяч градусов), она продолжает сжиматься, но при этом уже охлаждается: из голубой она постепенно превращается в красную, проходя все промежуточные стадии и опускаясь вдоль диагонали главной последовательности слева направо.

Локьер основывал свою схему на теории диссоциации, которая, как выяснилось позднее, является ошибочной. В настоящее время решение проблемы звездной эволюции связывается с новыми теориями об источниках энергии излучения звезд. Ниже мы возвратимся к этому вопросу, а сейчас лишь заметим, что, по-видимому, не существует единого пути эволюции для всех звезд.

Новые, сверхновые и переменные звезды

Самую большую услугу современной космогонии призваны оказать две категории звезд: новые и переменные звезды, изменения которых проявляются не в течение исключительно больших по сравнению с человеческой жизнью промежутков времени, а легко наблюдаются на протяжении дней или месяцев.

Новые звезды представляют собой звезды небольшой светимости, которые внезапно как бы "вспыхивают", становятся необычайно яркими, но затем в течение нескольких недель или месяцев их яркость постепенно уменьшается, и звезды приобретают почти прежний вид. Внимательное изучение этого явления показывает, что мы имеем дело с настоящим взрывом на звезде и с выбросом газов со скоростью до 1000 км/сек.

Переменные звезды - это звезды, яркость которых также испытывает заметные изменения, хотя и не такие резкие. У одних звезд изменения яркости носят периодический характер, у других такая периодичность отсутствует (неправильные переменные). Как показали работы советских астрономов Кукаркина и Паренаго, неправильные переменные по своим свойствам несколько похожи на новые. Действительно, можно рассматривать новые звезды как переменные, вспышки которых следуют через неодинаковые интервалы (в среднем через сотни или тысячи лет). Были уже отмечены две последовательные вспышки одной звезды в созвездии Северной Короны в 1866 г. и в 1946 г. При каждом взрыве такая звезда выбрасывает лишь весьма небольшое количество своей массы - примерно одну стотысячную долю. Следовательно, это не изменяет существенно физического состояния звезды. Добавим также, что новые звезды образуют специфическую группу, так что не всякая звезда может стать новой.

Но наряду с новыми звездами существуют звезды, встречающиеся гораздо реже и теряющие при взрыве до одной десятой массы самой звезды. Их абсолютная яркость в несколько дней может настолько вырасти, что она превысит абсолютную яркость Солнца в несколько сот миллионов раз. Это - так называемые сверхновые звезды.

предыдущая главасодержаниеследующая глава







© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100