НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

III. Теории возрождения миров

Теория Аррениуса

Космогоническая теория Сванте Аррениуса пользовалась очень большим успехом в начале нашего века. Мы не считали, однако, целесообразным излагать ее рядом с теориями Лапласа и Джинса, поскольку очень быстро после своего появления она безнадежно устарела. Главная заслуга Аррениуса состоит в попытке показать, что принцип Карно никоим образом не влечет за собой утверждения о тепловой смерти вселенной и, следовательно, о сотворении мира.

Аррениус утверждал, что вселенная не имеет конца, что она не может стариться, что миры беспрестанно рождаются и умирают. Цикл этой вечной эволюции он рисует следующим образом. Горячее солнце (звезда) охлаждается, затем потухает, покрывается твердой корой, но сохраняет очень высокую внутреннюю температуру. Столкновение такого потухшего солнца с другим потухшим солнцем приводит к возникновению так называемой новой звезды. Эта новая звезда превращается в спиральную туманность, которая в свою очередь становится звездным скоплением. Звезды скопления охлаждаются, и ход явлений возобновляется снова.

Многочисленные слабые стороны этой теории, конечно, видны сразу. В частности, в настоящее время известно, что новые звезды и спиральные туманности, содержащие миллиарды звезд, представляют собой объекты, которые никак нельзя сравнивать друг с другом.

Но Аррениус сумел, так сказать, "обратить" второй закон термодинамики, никак его не нарушая. Он предположил, что спиральная туманность, рождающаяся в результате удара двух потухших солнц, поглощает часть материи, которая выбрасывается звездами под давлением светового излучения, и слипается, образуя сначала метеориты. Таким образом, вселенная функционирует как некоторая тепловая машина, состоящая из горячих источников (звезд) и холодных источников (туманностей). Если догматически применять принцип Карно, то следовало бы говорить о выравнивании температур, т. е. об охлаждении звезд и об одновременном разогревании туманностей. Подобный механизм должен был бы в конце концов прекратить свою деятельность, и вселенная должна была бы умереть, поскольку перестал бы осуществляться обмен энергии.

Но согласно Аррениусу дело происходит не так. Он замечает, что туманности имеют очень малую плотность и, следовательно, весьма мало способны удерживать газовые молекулы, находящиеся вблизи их внешних границ.

Рис. 14. Большая туманность в созвездии Ориона
Рис. 14. Большая туманность в созвездии Ориона

Когда звезды (солнца) посылают свое тепло туманностям посредством излучения света и материальных частиц, то эта энергия сообщает некоторым молекулам дополнительную скорость. Эти молекулы преодолевают притяжение туманности и покидают ее навсегда. Но самые быстрые молекулы характерны как раз для состояний с высокой температурой, и поэтому энергия, которая передается от звезд к туманностям, не повышает температуру последних. По выражению Аррениуса, "энергия распыляется или "портится" в телах, находящихся в состоянии солнц и, напротив "улучшается" в телах, которые находятся в состоянии туманностей".* Что касается "горячих" молекул, покидающих туманность, то они могут увеличить энергию других активных солнц.

* (S. Аrrеnius, L'evolution des mondes, стр. IV.)

Эту схему весьма любопытно рассмотреть с принципиальной точки зрения. Конечно, трудно сказать, что она в какой-то мере соответствует реальности. Аррениус не учитывает ни превращения вещества в излучение, ни многих других явлений, открытых к настоящему времени. Тем не менее, его теория остается интересной, поскольку она иллюстрирует тот факт, что принцип Карно не должен обязательно приводить к тепловой смерти, и, кроме того, напоминает нам, что статистические законы не могут применяться, если реализуются некоторые особые условия, не предусмотренные в общем случае.

Замечание Анри Пуанкаре

Рассуждения Аррениуса привлекли внимание Анри Пуанкаре, который, правда, не считал их ни легко осуждаемыми, ни полностью убедительными. Но они навели Пуанкаре на мысль о других случаях, где принцип Карно оказывается также неприменимым:

"Тепло отличается от живой механической силы,- говорит он,* - тем, что горячие тела образованы многочисленными молекулами, скорости которых имеют всевозможные направления в то время, как скорости, приводящие к наличию живой механической силы, направлены в одну и ту же сторону. Совокупность газовых молекул образует газ, который может быть холодным и контакт с которым охлаждает. Напротив, изолированные молекулы являются как бы метательными снарядами, удары которых разогревают. В межпланетном же пространстве молекулы отделены друг от друга огромными расстояниями и являются поэтому изолированными. Следовательно, их энергия как бы повышается качественно, она перестает быть просто теплом и продвигается в разряд работы".

* (H. Poincare, Lemons sur le hypotheses cosmogonique, стр. XXIII.)

Современная постановка проблемы

Теория Аррениуса рассматривала вечное восстановление миров без учета превращения корпускулярной материи в излучение. На современном уровне наших знаний проблема ставится совсем иначе. Действительно, как мы видели в гл. II, сейчас считают, что часть атомов, из которых состоят различные небесные тела, должна превратиться в излучение. Следовательно, для того чтобы было возможным возрождение миров, необходимо, чтобы имело место обратное явление, а именно, чтобы в некоторых областях вселенной происходило превращение излучения (в особенности гравитации) в корпускулярную материю.

Прежде чем переходить к подробному изложению этой проблемы, рассмотрим сущность такого явления и возможное его значение. Солнце теряет вследствие распада своих атомов одну десятитриллионную долю своей массы в течение года. Ради простоты предположим, что другие небесные тела вселенной теряют массу в той же пропорции и что восстановление начинается с формирования наиболее простых атомов, т. е. атомов водорода, тех первичных элементов, из которых могут образовываться более сложные атомы. Тогда можно вычислить, например, сколько атомов водорода должно рождаться в одном кубическом метре пространства, чтобы процессы превращения корпускулярной материи в излучение и излучения в корпускулярную материю компенсировали друг друга. Результат вычислений зависит, конечно, от определенных статистических данных, касающихся, в частности, средних плотностей вещества во вселенной, которые еще не известны достаточно точно. Но все же некоторые астрономы получили при вычислениях, что в одном кубическом метре пространства должен рождаться каждые 100 триллионов лет один атом водорода из излучения. Для того чтобы дать представление об этом числе, следует сказать, что слой земной атмосферы толщиной 100 км (если считать от поверхности Земли) занимает объем в 50 триллионов кубических метров; и в этом колоссальном объеме должно рождаться каждые два года лишь по одному атому водорода. Даже если увеличить этот результат, учитывая возможные ошибки при определении исходных данных, в 10 или 100 раз, то можно все же утверждать, что подобное явление восстановления вещества, если бы оно действительно имело место, оставалось бы непосредственно совершенно незаметным. Только некоторые последствия такого явления помогли бы нам обнаружить его существование. Впрочем, было бы неизвестно, происходит ли оно в земной атмосфере, или вблизи небесных тел, или в относительно пустом межзвездном пространстве.*

* (Под "пустым" пространством или "вакуумом" следует понимать не пространство, лишенное материи (которого вообще не существует), а пространство с крайне малой плотностью вещества, рассеянного в нем в виде космической пыли, но пронизываемого излучением разных видов. (Прим. ред.))

Первые теории, созданные с целью показать возможность такого восстановления корпускулярной материи, как, например, теория Нернста, прибегали еще за помощью к световому эфиру - в том виде, как его представляли в конце последнего века. Это была гипотетическая среда - носитель световых и электромагнитных явлений, заполняющая все пространство, являющаяся одновременно и невесомой и твердой и обладающая столькими противоречивыми свойствами, что пришлось отказаться от предположения о ее существовании. Мы не будем останавливаться на этих теориях, так как их основы были разрушены современной наукой, и рассмотрим те решения данной проблемы, которые можно предвидеть сегодня.

"Материализация" фотона

Проблема могла быть поставлена корректно благодаря созданию квантовой теории света, которая была выдвинута впервые в 1905 г. Эйнштейном и в дальнейшем получила блестящее подтверждение.*

* (Впервые понятие о квантовом (прерывном') характере света выдвинул крупнейший немецкий физик М. Планк. (Прим. ред.))

В 1925 г. немецкий ученый Штерн поставил вопрос, не может ли столкновение двух частиц света (или, как их называют, двух фотонов) привести к рождению атома водорода, т. е. довольно сложной системы, состоящей из ядра с положительным электрическим зарядом (или протона) и из материальной частицы, заряженной отрицательно (или электрона). Штерн сделал вывод о возможности подобного явления при выполнении целого ряда условий, которые весьма редко могут быть осуществлены, особенно в межзвездном пространстве.* Действительно, это возможно, по Штерну, прежде всего лишь в условиях исключительно высокой температуры (равной многим миллионам градусов); впрочем, и обратное превращение, т. е. возникновение двух фотонов вследствие распада атома водорода, требует такой же температуры. Кроме того, для этого необходима исключительно большая плотность фотонов в данной области пространства. В 1931 г. немецкий ученый Доннан пришел к аналогичным выводам (в частности, в отношении температурных условий).

* ( Предположение Штерна об образовании атомов водорода из излучения является неправильным. Дело в том, что при всех превращениях излучения в вещество всегда образуются не единичные частицы, а "пары" частиц с противоположными зарядами: электрон - позитрон, протон - антипротон. Поэтому наряду с образованием из излучения атомов водорода должны в равном количестве образовываться атомы "антиводорода" с антипротоном в качестве ядра, вокруг которого обращается позитрон. (Прим. ред.))

По мнению этих ученых, превращение излучения в корпускулярную материю может происходить лишь во внутренних и очень горячих областях звезд. Оно не может иметь места в межзвездном пространстве, и его нельзя, разумеется, воспроизвести сейчас в лабораториях.

Но вопреки этому мнению именно в лаборатории была осуществлена двадцать лет назад "материализация" фотонов, правда, в рамках иного процесса, чем тот, который рассматривался Доннаном и Штерном. Речь идет об экспериментальных работах Андерсона и супругов Жолио-Кюри. Хотя эти ученые и не занимались построением атома водорода путем столкновения двух фотонов, но, по крайней мере, обнаружили возможность эффективной "материализации" фотонов и создания в лабораториях более сложных атомов из более простых.

Первое явление такого рода было обнаружено в лабораториях в результате изучения некоторых свойств так называемых космических лучей. Космические лучи, приходящие на Землю по всем направлениям из пространства, обладают очень большой проницающей силой и содержат в числе других маленькие заряженные частицы, аналогичные электронам, но заряженные положительно - отсюда их название "положительных электронов" или позитронов. Подобные частицы до 1933 г., когда их открыл американский ученый Андерсон, никогда еще не наблюдались.

Андерсон, бомбардируя пластинку свинца радиоактивным излучением тория, сумел получить в лаборатории те же позитроны, сопровождаемые отрицательными электронами. Он объяснил появление этих частиц тем, что фотон с большой энергией, излучаемый торием, при встрече с ядром атома свинца превращается в две материальные частицы, обладающие противоположными электрическими зарядами. Таким образом, можно сделать вывод о настоящей "материализации" излучения (именно этот термин использовали супруги Жолио-Кюри, которые повторили подобный опыт во Франции), поскольку фотон, частица излучения, рождает две частицы вещества: отрицательный и положительный электроны. Наоборот, если отрицательный электрон встречается с позитроном, то они могут "дематериализоваться" ("аннигилироваться"), превращаясь в два фотона (опыты Ф. Жолио и Ж. Тибо).

Супруги Жолио-Кюри пошли гораздо дальше в своих исследованиях и сумели осуществить превращение одних химических элементов в другие, подвергая их воздействию излучения различного рода. В большом числе случаев образованные таким путем новые элементы сразу же распадаются, давая начало третьим элементам (искусственная радиоактивность). Так, например, бомбардируя соответствующим излучением алюминий, эти ученые превратили его в неустойчивый фосфор, который вел себя как радиоактивный элемент в течение нескольких минут, а затем (через достаточно большой промежуток времени) окончательно превращался в кремний. В то же самое время можно было наблюдать образование многочисленных позитронов. Следует обратить внимание на то, что атомное число (соответствующее степени сложности атомной структуры) для получаемого кремния меньше такового для фосфора, но больше атомного числа первичного алюминия.

Эти работы, продолженные многочисленными коллективами ученых всех стран, привели к осуществлению превращений всех известных химических элементов. Более того, они позволили создать совсем новые химические элементы. Если русский ученый Менделеев насчитывал в своей периодической таблице 63 элемента, то теперь их известно уже 101. Новые элементы, полученные искусственным путем, неустойчивы и быстро превращаются вследствие радиоактивного распада в элементы с устойчивыми атомами.

В заключение можно сделать следующий вывод:

1. Корпускулярная "материализация" излучения осуществляется в лабораторных условиях при превращении фотона в пару "электрон - позитрон" и при этом не требуется ни очень высокой температуры, ни исключительной плотности фотонов. Правда, одна из двух частиц, образующихся из фотона, - позитрон, не входит в состав частиц, образующих атомы, и превращается быстро опять в излучение, если образование позитрона происходит не в пустоте (где он может существовать неограниченное время). Но во всяком случае "положительный электрон" - позитрон - существует и является одной из важных составляющих вещества. С другой стороны, возможна "дематериализация" (аннигиляция) двух противоположно заряженных частиц - электрона и позитрона, столкновение которых приводит к возникновению двух или более фотонов.

2. Из атомов, имеющих простое строение, можно построить более сложные атомы, например атомы кремния из атомов алюминия. Такое превращение в направлении, противоположном обычной радиоактивности ("восстановление" вещества), часто сопровождается излучением позитронов. Вспомним, что именно на основании этих исследований, касающихся превращения элементов, Бете создал теорию, объясняющую исключительно большое выделение энергии звездами.

В 1939 г., перед второй мировой войной, Ж. Соломон, один из самых многообещающих молодых французских физиков (которого немцы расстреляли 23 мая 1942 г. за его участие в движении Сопротивления), написал относительно понятия материи следующее:*

* ("Qu'est-ce que la matiere", стр. 89 (Publication du Centre International de synthese, 1945). )

"Не следует таким образом приписывать буквальный смысл выражениям - материализация или дематериализация, обозначающим всего-навсего переход из одного состояния материи в другое...".*

* (Для того чтобы у читателя не возникали какие-либо недоразумения, мы помещали употребляемые нами слова-"материализация" и "дематериализация" - в кавычках, понимая под "материализацией" превращение материи в состоянии излучения в материю корпускулярную (в вещество), а под "дематериализацией" - обратный процесс. (Прим. автора.))

На пути к "изготовлению" атомных ядер в лабораториях

По поводу описанных выше опытов можно сделать замечание, что ни в одном из них не наблюдалась "материализация" фотонов в частицы, входящие в состав ядер атомов. Действительно, при всех превращениях, приводящих к возникновению элементов с более высоким атомным весом, участвует излучение, но описанное выше восстановление вещества не сопровождается поглощением излучения.

Современная наука открывает, однако, гораздо более широкие перспективы. Исследования атомных превращений вынудили, как мы уже указывали в гл. II в связи с теорией Бете, заняться конструированием различных ускорителей частиц: циклотронов, бетатронов, синхротронов и др. Благодаря этим ускорителям не только можно осуществлять все более и более многообразные атомные превращения и воссоздать новые недавно открытые составляющие космического излучения, как, например, мезоны,* но можно также значительно углубить наши знания относительно строения атома. Было обнаружено, что наряду с электронами и протонами имеются другие частицы, из которых, во всяком случае, нейтроны, имеющие массу приблизительно равную по величине массе ядра атома водорода, но лишенные электрического заряда, играют исключительно важную роль.**

* ( Автор имеет в виду открытие так называемых "пи-мезонов" (1947 г.). "Мю-мезоны", являющиеся одной из составляющих космических лучей, были открыты в космических лучах в 1937 г. (Прим. ред.))

** (Нейтрон был открыт в 1932 г. (Прим. ред.) )

В настоящее время во многих странах, в частности, в СССР и США, используют гигантские ускорители частиц. Эти ускорители сообщают частицам энергию в сотни тысяч раз большую, чем та, с которой имел дело в своих опытах Андерсон. Некоторые современные ускорители имеют более 200 метров в диаметре и снабжены магнитами весом в тысячи тонн.*

* ( В атомной физике используется единица энергии, называемая электрон-вольтом. Это кинетическая энергия, которую приобретает электрон, пройдя разность потенциалов в 1 вольт. Электрон-вольт примерно соответствует кинетической энергии атома водорода, перемещающегося со скоростью 15 км/сек.

Самый мощный ускоритель в США может сообщать частицам энергию в шесть миллиардов электрон-вольт. Советские инженеры построили ускоритель, энергия которого достигает 10 миллиардов электрон-вольт. Имеются проекты создания ускорителей с энергией в 20-30 миллиардов электрон-вольт в Женеве и в 50- 60 миллиардов электрон-вольт в СССР.)

Исключительное значение тех исследований, которые позволят осуществить эти новые ускорители, было подчеркнуто французским физиком Ф. Перреном в сентябре 1952 г. в следующих словах:

"Все это (т. е. новая возможность разрушения или построения атомных частиц. - П. Л.), находится еще в области теории. Однако теперь можно дать себе отчет о том огромном значении, которое это открытие, если оно подтвердится экспериментально, будет иметь с философской точки зрения.

Это будет действительно отрицание метафизики, которая приписывает творение мира сверхъестественному вмешательству".

По-видимому, мы уже стоим на пороге той эпохи, которую предвидел Энгельс, когда он в 1875 г. писал по поводу возрождения миров:

"Вопрос о том, что делается с потерянной как будто бы теплотой, поставлен, так сказать, в чистом виде лишь с 1867 г. (Клаузиус). Неудивительно, что он еще не решен; возможно, что пройдет еще немало времени, пока мы своими скромными средствами добьемся решения его. Но он будет решен; это так же достоверно, как и то, что в природе не происходит никаких чудес...".*

* (Ф. Энгельс, Диалектика природы, Госполитиздат, 1950, стр. 228.)

Космические лучи

Если экспериментальные доказательства возможности восстановления вещества благодаря превращениям излучения становятся все более многочисленными и убедительными, то все же остается открытым вопрос о том, где происходит во вселенной это восстановление. Мы остановимся на современных представлениях об этих процессах.

Если во вселенной действительно происходит процесс восстановления вещества, то этот процесс, возможно, сопровождается освобождением некоторого "вторичного" излучения. Именно как это "вторичное излучение" можно было бы истолковать поток частиц, приходящих на Землю в составе космических лучей.* Вот почему те ученые, которые занимаются вопросами эволюции вселенной, всегда уделяли большое внимание проблеме космических лучей.

* ( Космические лучи - это непрерывно падающий из мирового пространства на Землю поток заряженных частиц, в основном протонов (ядер атомов водорода), обладающих очень большой энергией. (Перев.))

Некоторые свойства космических лучей стали известны еще в начале этого века, но лишь гораздо позднее, с помощью наблюдений в стратосфере, было доказано их внеземное происхождение. Тщательное изучение показало, что космическое излучение распределено почти строго равномерно в пространстве, а также во времени, т. е. что практически нет преимущественного направления, в котором космические лучи приходили бы па Землю в большем количестве, и их интенсивность всегда одинакова в любой час и в любое время года. В частности, нет никакого максимума, соответствующего направлению на Солнце или на те или иные участки Млечного Пути.*

* (Эти слова автора нуждаются в том уточнении, что все же часть космических лучей имеет солнечное происхождение и изменение их интенсивности связано, в частности, с так наз. вспышками на Солнце. Например, во время большой вспышки 23 февраля 1956 г. интенсивность космических лучей увеличилась в несколько раз. (Перев.))

С другой стороны, энергия, переносимая этими лучами, огромна. Измерения, выполненные как на поверхности Земли, так и на очень больших высотах, показывают, что эта энергия в десятки раз больше той, которая посылается на Землю в виде света и тепла всеми звездами вместе взятыми (если не считать Солнца).

Несмотря на все усилия, физики еще не смогли придти к целиком удовлетворительному объяснению природы огромной энергии этого потока частиц. Вместе с тем, эта проблема имеет фундаментальное значение. Действительно, нельзя не видеть, что никакая космогоническая теория, касающаяся вселенной в целом, не может быть действительно полной, если она не дает приемлемого решения этой проблемы.

"Наши знания еще весьма недостаточны, чтобы предложить в связи с этим излучением нечто другое, кроме отрицательных выводов", - заметил недавно французский ученый П. Оже,* и действительно, в настоящее время представляется достоверным лишь то, что космические лучи не посылаются ни Солнцем, ни совокупностью звезд, образующих системы, аналогичные нашему Млечному Пути.

* (P. Auger, Rayon cosmique, стр. 133.)

Если не следовать за полетом воображения некоторых сторонников теории расширяющейся вселенной, например Цвикки, Регенера и Леметра, для которых космические лучи были образованы в эпоху "сотворения мира", после чего начался их непрерывный круговорот в конечном и неограниченном мире (одной из моделей Эйнштейна), то необходимо предположить, что они или зарождаются в межзвездном пространстве или излучаются в пространство некоторыми особыми звездами, распределение которых в среднем является более равномерным, чем распределение звезд, окружающих нашу планету.

Высказывалось также предположение о существовании в обширных областях пространства исключительно протяженных электромагнитных полей, которые могли бы, действуя непрерывно, сообщать частицам наблюдаемую большую энергию. Но для того чтобы эту теорию обосновать, необходимо ее дополнить еще довольно произвольным предположением о существовании каких-то сложных процессов, приводящих, в частности, к сохранению той разности потенциалов, которую потоки электронов стремятся все время уничтожить. Таким образом, мы погружаемся здесь, по выражению П. Оже, в "настоящий научный романтизм".

Другая гипотеза была выдвинута около четверти века назад Милликеном. Хотя Милликен выступал после этого с громкими идеалистическими декларациями, но он является все же замечательным экспериментатором. В словах, которые мы ниже цитируем, мы встречаемся, к счастью, с экспериментатором, а не с философом-идеалистом.

Для Милликена "никакие атомные превращения, если это только не процесс формирования атомов, не могут привести к выделению такой энергии".*

* (Мi11ikan, Discussion sur levolution de l'univers, стр. 61.)

В своих теоретических набросках того времени американский ученый не рассматривал, правда, вопрос о восстановлении вещества благодаря превращениям излучении, а лишь вопрос о появлении при некоторых условиях атомов с более сложной внутренней структурой (например, атомов гелия) в результате превращения атомов с более простой структурой (например, атомов водорода). Но, с другой стороны, он полагал, что при образовании еще более тяжелых атомов (кислород, кремний, железо) могут возникать космические лучи.

Мы снова встречаемся здесь с гипотезой, с помощью которой Бете объясняет природу источника лучистой энергии звезд. Но Милликен полагает, что данные явления, в частности, соединение четырех атомов водорода и образование атома гелия, могли бы также иметь место внутри туманностей в условиях довольно низкой температуры, если частицы там обладают "очень большой длиной свободного пробега".

Если это так, то атомы водорода должны присутствовать в областях пространства, удаленных от звезд. Это именно тот результат, к которому пришел Боуэн, когда он в 1928 г. окончательно разрешил загадку "небулия". Известно, что спектральный анализ света, излучаемого некоторыми туманностями или некоторыми весьма рассеянными скоплениями материи, позволял предположить о существовании в этих объектах неизвестного до сих пор на Земле химического элемента - "небулия". Боуэн же установил вполне определенно, что это таинственное световое излучение создается наиболее распространенными на нашей планете элементами: кислородом и азотом, но находящимися в особых условиях "в областях, которые отделены от звездных источников возбуждения световыми годами".*

* (Мi11ikan, Discussion sur 1'evolution de l'univers, стр. 61.)

Присутствие этих различных элементов делает, следовательно, гипотезу Милликена правдоподобной; конечно, этого еще недостаточно, чтобы доказать ее справедливость, поскольку данный факт, несомненно, может быть вполне объяснен также совсем другим путем.

С другой стороны, можно спросить, не была бы теория воссоздания вещества из атомов водорода, выдвигаемая американским ученым, еще более полной, если бы в нее был включен вопрос об образовании атомов в результате превращения излучения. После работ Андерсона и супругов Жолио-Кюри эта гипотеза представляется не такой уже неправдоподобной, как она казалась пятнадцать лет назад.

Как бы то ни было, но теория Милликена также приводит к отрицанию универсальности принципа Карно, так как по этой теории существование космических лучей свидетельствует о том факте, что некоторые области вселенной возвращаются в известном смысле в прежнее состояние. Правда, некоторые креационисты, как, например, Эддингтон, принимая, как и Милликен, что возникновение космических лучей есть следствие процесса построения тяжелых атомов из легких, пытаются показать, что эти явления не противоречат, по существу, второму началу термодинамики и что тепловая смерть вселенной все равно неизбежна. По нашему мнению, это значит смещать, искажать вопрос.

Существенное соображение было вполне определенно высказано самим Милликеном в ходе глубоких исследований, на которые мы уже ссылались. В умеренных, но справедливых выражениях он подчеркнул, что мы не имеем права на систематическое и умозрительное обобщение принципа Карно:

"В свете этих фактов (перенос большого количества энергии космическими лучами. - Прим. автора), - писал он, - можно взглянуть на второй закон термодинамики, который по странному мнению некоторых ученых является определяющим фактором для теорий происхождения и судьбы вселенной, иными глазами. Ведь этот закон в целом есть лишь простое обобщение тех фактов, повседневно наблюдаемых в земных условиях, что энергия в любой форме стремится превратиться в тепло, в излучение, рассеивающееся в пространстве, после чего она для нас теряется. Таким образом, горячее стремление к его обобщению основано на недостаточных знаниях. Вот почему экспериментатор играл и будет всегда играть столь важную роль в процессе науки. В результате действенного применения экспериментальных методов один за другим обнаруживались факты, которые оставались вне поля зрения теоретиков, даже когда последние, оставаясь в рамках логичных, по их мнению, теорий, уже находили для наблюдаемых фактов их места в цельной цепи последовательных явлений. Не заходят ли теоретики, находящиеся до сих пор в неведении относительно источника наиболее мощного, пожалуй, излучения, слишком далеко в своих заключениях о происхождении и судьбе вселенной?".*

* (Мillikan, Discussion sur levolution de l'univers, стр. 50.)

Добавим, что если Милликен ставит проблему, касающуюся принципа Карно, корректно и если некоторые из его предположений продолжают привлекать внимание ученых, то все же ничто в самых последних работах о космических лучах не подтвердило пока его гипотез. Вполне естественно, что физики продолжают работать в других направлениях. Одни, как, например, Альфвен, привлекают в качестве ускорителей электронов мощные магнитные поля, которые должны окружать звезды. Аналогичным образом Ферми объяснял происхождение энергии космических лучей при столкновениях частиц с намагниченными облаками межзвездной среды. Другие, как, например, Цанстра, заметили, что сверхновые в момент их вспышки выбрасывают в пространство значительную энергию, что приводит также к возникновению интенсивного космического излучения; это как будто подтверждается очень слабыми колебаниями наблюдаемой интенсивности космического излучения.

Все эти теории Милликена, Альфвена, Ферми, Цанстра, Регенера содержат слабые пункты и не все равноценны в объяснении наблюдаемых фактов. Однако мы пока не имеем оснований для предпочтения одной из них и полного отбрасывания других. Впрочем, возможно, что, поступая таким образом, мы даже совершили бы ошибку. Мы объединяем под названием космических лучей все виды мощного излучения, приходящего, как нам кажется, из глубин вселенной. Тот факт, что мы наблюдали все эти лучи, а поэтому и изучаем во всей их совокупности как нечто целое, совсем не доказывает, что все они имеют одно и то же происхождение. "Первичное" космическое излучение, которое приходит со всех направлений из пространства в верхние слои земной атмосферы, состоит преимущественно из положительно заряженных частиц - протонов. И если говорить только о позитронах, то мы их получаем в лабораториях (т. с. в совсем других условиях) или как результат "материализации" фотонов, или как результат превращений элементов (трансмутаций). Следовательно, является правдоподобным, что космические лучи имеют далеко не единую природу, а представляют собой совокупность излучений, вызванных процессами атомных превращений во вселенной, которые имели место в прошлом или протекают в настоящее время. Притом эти превращения могут принимать весьма различные формы, среди которых помимо рождения некоторых атомов из атомов водорода вполне может фигурировать также "аннигиляция" вещества, а также, если это возможно, рождение атомов водорода как результат "материализации" фотонов.

Роль космических облаков

Другим фактором, возможно, играющим важную роль в "восстановлении" вещества во вселенной, является существование в межзвездном пространстве более иди менее рассеянных скоплений вещества.

По правде сказать, мы мало знаем об этих космических объектах. Часто они являются совсем темными и образуют иногда настоящие черные пятна на звездном небе. В тех, которые немного светятся, можно обнаружить наряду с газами с небольшим атомным весом также более тяжелые элементы, например кальций. Но до сих пор было невозможно точно оценить их массу в той или иной области пространства. Однако многие астрономы полагают, что общая масса облаков рассеянного вещества в Галактике примерно равна суммарной массе звезд.

О происхождении скоплений рассеянного вещества также пока можно сказать мало. Как мы видели в гл. II, их присутствие обнаруживают в тех спиральных галактиках, которые рассматриваются в настоящее время как "молодые". С другой стороны, вполне очевидно, что сгущения диффузной материи должны содержать какие-то остатки "мертвых" небесных светил; потухших звезд, потерпевших катастрофы планет или комет. Они должны также содержать материю, которая выбрасывается из верхних слоев звездных атмосфер, и материю, бурно извергающуюся из звезды, когда она становится новой.

Возникает, следовательно, вопрос, не может ли материя, выделяемая яркими звездами, и материя, существующая внутри "мертвых" галактик, собираться постепенно в других областях пространства и образовывать протяженные диффузные туманности, которые будут затем эволюционировать, превращаясь в спиральные туманности. Для того чтобы такая эволюция соответствовала на самом деле истинному восстановлению миров, необходимо, чтобы образовавшиеся подобным путем галактики в свою очередь могли послужить отправной точкой для возрождения корпускулярной материи из излучения. Из остатков спиральных туманностей могли бы тогда рождаться новые галактики.

Сейчас уже известно, что космические облака, светящие своим собственным светом, возбуждаются излучением очень горячих звезд. Это излучение ионизует атомы облаков, т. е. некоторые фотоны отрывают у атомов электроны и передают им свою энергию. Атомы водорода, имеющие лишь по одному электрону, вращающемуся вокруг ядра (их содержится очень много в межзвездной материи), распадаются при этом на электроны (отрицательные) и свободные протоны (положительные ядра).

Рис. 15. Темная туманность в созвездии Змееносца
Рис. 15. Темная туманность в созвездии Змееносца

Свободные электроны могут снова соединиться с протонами или возбуждать другие атомы. Не сопровождаются ли эти явления "материализацией" некоторых фотонов и превращениями, приводящими к образованию более сложных атомов, что как раз облегчается существованием свободных протонов? Хотя физические условия в этих скоплениях весьма отличны от тех, которые имеют место в звездах или в лабораториях, где возможно осуществление подобных атомных превращений, было бы, несомненно, преждевременным отбрасывать в настоящее время эти гипотезы. Как бы то ни было, полная теория эволюции вселенной все равно должна будет объяснить присутствие и особенно значение и роль межзвездной материи.

Проблема относительной распространенности элементов

Прежде чем закончить эту главу, следует сказать еще несколько слов по поводу проблемы, которая стала изучаться астрономами сравнительно недавно. При подсчете относительных количеств, в которых встречаются во вселенной различные химические элементы, можно заметить, что наиболее распространенными являются элементы с наименьшим атомным весом и прежде всего водород. По мере увеличения атомного веса, т. о. с усложнением атомов, элементы становятся все более и более редкими, а элементы с таким большим атомным весом, как уран, встречаются в относительно ничтожном количестве.* В то же время можно констатировать, что одни изотопы химических элементов встречаются гораздо чаще, чем другие.

* ( Согласно современным данным наиболее распространенным элементом во вселенной является водород (90% по числу атомов), затем идет гелий (примерно 9%), потом углерод, кислород, азот и кремний (примерно 0,1% каждый), а остальное - все прочие элементы, вместе взятые. (Прим. ред.))

Подобная относительная распространенность элементов связана, очевидно, с условиями их происхождения. Таким образом, наблюдения дают нам новые и ценные данные для построения рациональной космогонии.

К сожалению, эти данные прежде всего использовались до сих пор креационистами, поддерживающими теорию расширяющейся вселенной, как, например, Леметром, Гамовым или Чандрасекаром. Последние исходят из начального состояния материи в условиях исключительно большой концентрации, очень большой плотности и очень высокой температуры (рассматривают и плотности, превышающие примерно в 10 миллионов раз плотность воды, и температуры, измеряемые десятками миллиардов градусов). Эти работы не дали ничего положительного в деле создания научной теории эволюции вселенной. Вместе с тем, если гипотеза о расширении местного скопления галактик внутри бесконечной вселенной экспериментально подтвердится (мы возвратимся к этому вопросу в главе VIII), некоторые результаты этих работ, возможно, окажутся полезными. Во всяком случае, если мы хотим воссоздать правильную картину истории вселенной, проблема относительной распространенности химических элементов должна быть также разрешена.

Выводы из этой главы

Из всего изложенного в этой главе читатель может заключить, что сейчас еще несколько преждевременно пытаться построить полную теорию возрождения миров. Впрочем, мы и не собирались излагать здесь такую теорию. Мы рассмотрели точку зрения креационистов и показали явную слабость их аргументов, претендующих на научность. Мы увидели, что принцип Карно, на котором они пытаются обосновать свои утверждения о конечности вселенной во времени, далеко не является абсолютным законом, а лишь статистическим результатом. Он справедлив лишь в масштабах человеческих восприятий, и необходимо отказаться от его систематического применения как в бесконечно малом, так и в бесконечно большом. Наконец, "материализация" излучения, которую идеалисты рассматривали как неосуществимое, теперь осуществлена. Возможность "воссоздания" вещества установлена теперь со всей уверенностью, хотя наши настоящие знания еще не позволяют определить конкретно ход этого процесса.

предыдущая главасодержаниеследующая глава







© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100