НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

Глава 5. Спектральные наблюдения Солнца

Вы уже знаете, что спектр Солнца состоит из яркого непрерывного спектра с наложенными на него темлыми линиями поглощения фраунгоферовыми линиями.

Каждая из этих линий принадлежит спектру какого-либо химического элемента из таблицы Менделеева. Изучение солнечного спектра показало, что на Солнце присутствуют почти все известные химические элементы. Больше всего на Солнце водорода (Н) 80%. затем следует гелий (Не) - около 20%. Все остальные элементы составляют доли процента от общего объема Солнца. Тем не менее, в спектре Солнца есть много линий железа (1-е), магния (Mg), кальция (Са), натрия (Na) и многих других элементов. Наиболее широкие и глубокие линии в спектре Солнца имеют специальные буквенные обозначения "личные имена". Приведем в табл. 7 список этих линий, хорошо видных в спектре даже с небольшой дисперсией. Обычно наблюдатели-спектроскописты узнают их "в лицо".

На рис. X представлен спектр Солнца, полученный со специальной решеткой эшеле. Она позволяет получить почти весь видимый спектр (с некоторыми пропусками) за одну экспозицию в виде большого числа полосок. У края каждой полоски указан ее номер. В таблице 8 эти номера помещены в 1-й столбец, а во 2-м и 3-м столбцах указаны длины волн λ1 и λ2 линий, отмеченных точками под соответствующими полосками спектров. Линии из табл. 7 помечены стрелками под спектром и перечислены в Примечаниях табл. 8 в соответствующих строках.

Таблица 7
Таблица 7

Темная полоса, идущая посередине всех полосок, - это спектр солнечного пятна. Первое, что нужно научиться делать при спектральных наблюдениях, -это ориентироваться в солнечном спектре по цвету и сильным линиям, перечисленным в табл. 7. Следующий необходимый навык - определение дисперсии спектрографа не по формуле, а по реальному спектру. Для начала можно потренироваться в определении дисперсии на разных полосках спектра на рис. X. Для этого надо знать длины волн двух линий и расстояние в мм между ними. Для каждой полоски длины волн двух линий Вам известны. Определите разность этих длин волн Δλ (Å) и расстояние между линиями в мм Δl. Теперь можно определить дисперсию на каждой полоске


Сравнив дисперсию в синей и красной части спектра. Вы увидите, что она с ростом длины волны уменьшается. Не противоречит ли это нашему утверждению, что у дифракционной решетки дисперсия не зависит от длины волны?

Вспомним, что это утверждение справедливо для одного порядка решетки. С переходом же от порядка к порядку дисперсия растет для всех длин волн. Каждая полоска на рис. X это один из порядков спектра, даваемого эшеле. Но выделяются они не стеклянными фильтрами, как было рассказано выше, а разносятся по высоте призмой, направление дисперсии которой перпендикулярно направлению дисперсии эшеле. По этой спектрограмме (рис. X) вы можете решить еще две задачи; определить, к каким порядкам относятся разные полоски и какова дисперсия призмы, разносящей порядки. В первой задаче надо воспользоваться формулой kλk = const, где k - номер порядка, а λk - средняя длина волны на полоске, соответствующей n-му порядку. Наименьшее значение к будет на той полоске, где дисперсия минимальна. В нашем случае это нижняя полоска с линией Нα. Принимаем, что она относится к n-му порядку. Следующая полоска будет относиться к k=n+1 порядку и т.д. до k=n+28. Для каждой полоски надо еще определить длину волны середины полоски Хк интерполяцией между двумя точками с известными длинами волн.

Теперь осталось решить уравнения с одним неизвестным


Из-за неточностей измерений п будет получаться из разных пар несколько различной и отличной от целого. Осреднение полученных значений и округление их до целого даст вам значение n - номер порядка нижней полоски.

Вторую задачу можно решить графически. У Вас уже есть длины волн середин каждой полоски. Измерьте расстояние каждой полоски от первой и постройте график. По оси X отложите длины волн λk, а по оси Υ расстояние соответствующих полосок от первой. Вы получили кривую дисперсии призмы, разводящей порядки.

Для того чтобы полностью освоиться с видом солнечного спектра, очень полезно сделать следующую работу. Попробуйте определить цвет каждой полоски. Для этого Вам надо будет отождествить спектр, который Вы наблюдаете на своем спектрографе, с рис. X. Вращая решетку, найдите сначала в красной части спектра линию На. Так как она существенно шире всех остальных линий, ошибиться в ее отождествлении трудно. Затем найдите остальные сильные линии из списка табл. 7. После этого переходите к отождествлению более слабых линий и определению цвета каждой полоски. Попробуйте запомнить цвет излучения разных длин волн, хотя бы через 500 Å.

Когда Вы освоитесь с видом солнечного спектра и не будете искать линию Нβ;, в красной части спектра, вам надо научиться различать спектры отдельных активных образований на Солнце.

Начнем с наиболее простого-спектра солнечного пятна. Наведите Ваш телескоп так, чтобы большое пятно стояло на щели спектрографа. В спектре Вы увидите темную полоску вдоль направления дисперсии это и есть спектр пятна (рис. IX). Присмотритесь внимательно к виду спектральных линий. Некоторые из них выглядя! гак же, как и в фотосфере. Это в основном наиболее гонкие и четкие линии, принадлежащие нашей земной атмосфере. Некоторые солнечные линии также почти не меняют свой вид при переходе от фотосферы к пятну. Другие же линии ведут себя иначе. Некоторые из них усиливаются, некоторые ослабляются. В спектре пятна появляются линии, вообще отсутствующие в спектре фотосферы.

Это происходит из-за различия температур в фотосфере и пятне. Температура пятна на 2000-3000 Кельвинов ниже, чем температура фотосферы, а каждая спектральная линия возникает лишь при условии, что значения температуры и плотности среды лежат в определенном интервале. Поэтому линии, требующие для своего образования высокой температуры, например, линии ионизованного железа (FeII), в пятне исчезают. Другие же, наоборот, видны в спектре пятна, а в фотосфере не видны это низкотемпературные линии.

Когда на щели стоит большое пятно с полутенью, мы получаем спектр, подобный тому, что представлен на рис. IX, а, более темная полоска спектра тени, с двух сторон от которой проходят менее темные полоски спектра полутени.

В пятнах, находящихся вдали от центра Солнца, при хорошем качестве спектра видно, что линии в полутени искривлены (рис. IX, а и б). Это проявление движения вещества в пятне называется эффектом Эвершеда.

Некоторые линии в спектре пятна расширены, а в больших пятнах заметно их расщепление. В этом случае мы имеем дело с эффектом Зеемана расщеплением линий в магнитном поле пятна. Ниже мы вернемся к возможностям определения величины эффекта Эвершеда и измерению магнитных полей пятен.

Обратим внимание на вид пятна в линии К CaII одной из интереснейших линий солнечного спектра (нижний спектр на рис. IX). Это очень широкая и глубокая линия (так же, как и Н CaII). В центре ее пятно невидимо. Темная полоска, идущая вдоль спектра, в центре линии К превращается в яркое пятнышко. Дело в том, что центр линии К образуется в хромосфере и мы видим горячий (а следовательно, яркий) флоккул, расположенный над пятном (на фото справа этот флоккул над пятном существенно ярче, чем на левом и нижнем). Флоккул виден в линии К и в соседних с пятном областях. Там в линии видны два эмиссионных пика с более темным провалом между ними. Говоря о флоккуле, мы уже перешли к объектам, которые не видны в белом свете. На фото слева можно увидеть волокна. Они лучше видны в линии На (верхний спектр). Над пятном виден более темный узел в линии На - это спокойное волокно, а в нижней части - поднимающееся волокно: темный узел в линии На смещен в синюю сторону спектра. Еще лучше видны сдвиги линий из-за движения в спектрах протуберанцев (рис. XII верхний).

Но самое удивительное зрелище - это спектр солнечной вспышки. В самом начале вспышки, в ее взрывной фазе, на фоне многих темных линий поглощения появляется яркое излучение с очень широкими крыльями (т. е. простирающееся на несколько ангстрем в обе стороны от линии). Пример спектра начальной фазы вспышки приведен на рис. XI. С развитием вспышки излучение уменьшается, крылья исчезают, остаются яркими только центры линий. В этой стадии вспышку легко спутать с флоккулом. Такого рода образование видно в верхней части рис. IX справа.

В спектре можно наблюдать и другие тонкоструктурные образования - ядра непрерывной эмиссии и усы. Оба этих образования очень маленького размера, но спектр у них разный. Ядра непрерывной эмиссии излучают по всему непрерывному спектру (см. рис. IX верхние). Усы же появляются в виде длинных и узких крыльев около отдельных линий. Причем в центре линии излучение такое же, как в соседних областях (рис. XII нижний).

Перейдем теперь к рассмотрению ряда задач, которые можно решать по наблюдениям солнечного спектра.

предыдущая главасодержаниеследующая глава







© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100