НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

2. Астрономические наблюдения и телескопы

1. Телескопы

Основным астрономическим прибором является телескоп.

Назначение телескопа - собрать как можно больше света от исследуемого объекта и (при визуальных наблюдениях) увеличить его видимые угловые размеры.

Основной оптической частью телескопа служит объектив, который собирает свет и создает изображение источника.

Если объектив телескопа представляет собой линзу или систему линз, то телескоп называют рефрактором (рис. 2), а если вогнутое зеркало - то рефлектором (рис. 3).

Рис. 2. Телескоп-рефрактор
Рис. 2. Телескоп-рефрактор

Рис. 3. Крупнейший в мире телескоп-рефлектор, диаметр зеркала которого 6 м (СССР)
Рис. 3. Крупнейший в мире телескоп-рефлектор, диаметр зеркала которого 6 м (СССР)

Собираемая телескопом световая энергия зависит от размеров объектива. Чем больше площадь его поверхности, тем более слабые светящиеся объекты можно наблюдать в телескоп.

В рефракторе лучи, пройдя через объектив, преломляются и образуют изображение объекта в фокальной плоскости (рис. 4, а). В рефлекторе лучи от вогнутого зеркала отражаются и потом также собираются в фокальной плоскости (рис. 4, б). Изображение небесного объекта, построенное объективом, можно либо рассматривать через линзу, называемую окуляром, либо фотографировать.

Рис. 4. Схемы хода лучей в телескопах: а - рефрактор; б - рефлектор; в - менисковый телескоп
Рис. 4. Схемы хода лучей в телескопах: а - рефрактор; б - рефлектор; в - менисковый телескоп

При изготовлении объектива телескопа стремятся свести к минимуму все искажения, которыми неизбежно обладает изображение объектов. Простая линза сильно искажает и окрашивает края изображения. Для уменьшения этих недостатков объектив изготовляют из нескольких линз с разной кривизной поверхностей и из разных сортов стекла. Поверхности вогнутого стеклянного зеркала, которая серебрится или алюминируется, придают для уменьшения искажения не сферическую, а параболическую форму.

Советский оптик Д. Д. Максутов разработал систему телескопа, называемую менисковой. Она соединяет в себе достоинства рефрактора и рефлектора. По этой системе устроена одна из моделей школьного телескопа. Тонкое выпукло-вогнутое стекло - мениск - исправляет искажения, даваемые большим сферическим зеркалом. Лучи, отразившиеся от зеркала, отражаются затем от посеребренной площадки на внутренней поверхности мениска и идут в окуляр (рис. 4,в), роль которого выполняет короткофокусная линза. Существуют и другие телескопические системы.

Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, а также видимые угловые расстояния между светилами, но звезды в любой телескоп из-за огромной удаленности видны лишь как светящиеся точки.

В телескопе получается обычно перевернутое изображение, но это не имеет никакого значения при наблюдении космических объектов. Введение добавочных линз в окуляр делает телескоп подзорной трубой, дающей прямые изображения, но при этом теряется часть света.

При наблюдениях в телескоп редко используются увеличения свыше 500 раз. Причина этого - воздушные течения, вызывающие искажения изображения, которые тем заметнее, чем больше увеличение телескопа.

Самый большой рефрактор имеет объектив диаметром около 1 м. Диаметр вогнутого зеркала самого большого в мире рефлектора - 6 м. Этот телескоп изготовлен в СССР и установлен в горах Кавказа. Он позволяет наблюдать звезды, в десятки миллионов раз более слабые, чем видимые невооруженным глазом.

2. Особенности астрономических наблюдений

В основе астрономии лежат наблюдения, производимые с Земли и лишь с 60-х, годов нашего века выполняемые также из космоса - с автоматических и пилотируемых станций. Наблюдения в астрономии, играя такую же роль, как опыты в физике и химии, имеют ряд особенностей.

Первая особенность состоит в том, что астрономические наблюдения в большинстве случаев пассивны по отношению к изучаемым объектам. Мы не можем активно влиять на небесные тела, ставить опыты (за исключением редких случаев), как это делают в других естественных науках. Лишь использование космических аппаратов дало возможность проводить непосредственные исследования на Луне и ближайших планетах.

Кроме того, многие небесные явления протекают столь медленно, что наблюдения их требуют громадных сроков; так, например, изменение наклона земной оси к плоскости ее орбиты становится хорошо заметным лишь по истечении сотен лет. Поэтому для нас не потеряли своего значения некоторые наблюдения, производившиеся тысячи лет назад, хотя они и были, по современным понятиям, очень неточными.

Вторая особенность. Мы наблюдаем положение небесных тел и их движение с Земли, которая сама находится в движении - вращается вокруг своей оси и обращается вокруг Солнца. Однако мы, описывая движение небесных тел по отношению к земному наблюдателю, нередко считаем его неподвижным. Например, говорим о восходе и заходе светил, хотя известно, что это происходит вследствие вращения Земли, о годичном движении Солнца по созвездиям, хотя оно является следствием обращения Земли вокруг Солнца. Кроме того, из-за движения Земли вид неба для земного наблюдателя в течение года изменяется. Он зависит не только от того, в каком месте Земли находится наблюдатель, но и от того, в какое время суток и года он наблюдает. Например, когда у нас зимний день, в Южной Америке летняя ночь, и наоборот. Есть звезды, видимые лишь летом или зимой.

Третья особенность астрономических наблюдений связана с тем, что все светила находятся от нас очень далеко, так далеко, что ни на глаз, ни в телескоп нельзя решить, какое из них ближе, какое дальше. Все они кажутся нам одинаково далекими. Поэтому расстояние между объектами на небе (например, между звездами) измеряют углом, образованным лучами, идущими к объектам из точки наблюдения (рис. 5). Такое расстояние называется угловым и выражается в градусах и его долях. При этом считается, что две звезды находятся недалеко друг от друга на небе, если близки направления, по которым мы их видим (например, звезды А и И В, см. рис. 5). Возможно, что третья звезда С, на небе более далекая от C, в пространстве к А ближе, чем звезда В.

Рис. 5. Угловые измерения на небе высота светила над горизонтом
Рис. 5. Угловые измерения на небе высота светила над горизонтом

Угловое расстояние светила от горизонта h (см. рис. 5) называется высотой светила над горизонтом.

Высота светил отсчитывается от 0° (светило находится на горизонте) до 90° (светило над головой). Положение светила относительно сторон горизонта (стран света) указывается с помощью второго угла, который называется азимутом и меняется в пределах от 0 до 360° (отсчет ведется от юга по ходу часовой стрелки).

Измерения высоты светила и его азимута выполняют специальными угломерными оптическими инструментами - теодолитами.

Для приближенной оценки угловых расстояний на небе полезно знать, что угловое расстояние между двумя звездами "ковша" (α и β, см. рис. 7) Большой Медведицы равно примерно 5°.

Видимые размеры небесных объектов также можно выразить в угловых единицах. Например, диаметры Солнца и Луны в угловой мере примерно равны 0,5°.

 По своему линейному размеру диаметр Солнца
 больше диаметра Луны примерно в 400 раз.
 Почему их угловые диаметры o почти равны? 

О том, как определяют на основании угловых измерений линейные расстояния до небесных тел и их линейные размеры, вы узнаете из § 12.

3. Ваши наблюдения. Для лучшего усвоения астрономии вы должны как можно раньше приступить к наблюдениям небесных явлений и светил. Подробные указания к наблюдениям и использованию подвижной карты звездного неба, имеющейся в учебнике, даны в приложениях VI и VII.

предыдущая главасодержаниеследующая глава










© 12APR.SU, 2010-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь