Астродинамика - раздел небесной механики, изучающий движение искусственных небесных тел - автоматических и пилотируемых космических летательных аппаратов. Наряду с термином "астродинамика" этот раздел науки называют также космодинамикой, небесной или космической баллистикой, прикладной небесной механикой. Астродинамика представляет собой основу общей теории полета космических аппаратов. В отличие от классической небесной механики астродинамика изучает движение не только пассивное, происходящее под действием сил тяготения небесных тел, но и активное, управляемое путем включения двигателей. Она делится на две части: теорию движения центра масс космического аппарата, т. е. теорию космических траекторий, и теорию движения космического аппарата относительно центра масс, или теорию его вращательного движения.
Астродинамика занимается определением наиболее удобной, с различных точек зрения, траектории (орбиты) полета к заданному небесному телу. Главное требование при этом - возможно меньшая скорость, до которой необходимо разогнать космический аппарат на начальном, активном участке полета, и, таким образом, наименьшая масса ракеты-носителя или орбитального разгонного блока при старте с околоземной орбиты. Это, в свою очередь, позволяет увеличить полезную нагрузку и, следовательно, добиться наибольшей научной эффективности полета. При определении орбиты учитываются требования простоты управления, условий радиосвязи (например, в момент захода станции за планету при ее облете радиосвязь нарушается), условий научных исследований (посадка на дневной или ночной стороне планеты) и т. п.
Рассчитываются также орбитальные маневры с помощью бортового двигателя при выходе космического аппарата на орбиту искусственного спутника Луны или планеты, при спуске на поверхность небесного тела, при переходе с одной орбиты спутника на другую; предусматриваются корректирующие маневры для исправления неизбежных ошибок орбиты, обусловленных недостаточно точными сведениями о межпланетных расстояниях, массах планет и их спутников, неточностью работы аппаратуры управления.
Продолжительность работы двигателей на активных участках полета исчисляется минутами или секундами, в то время как пассивный полет (с выключенным двигателем) на пути к Луне и планетам продолжается сутки, месяцы, годы, даже десятки лет. Полеты с краткосрочным включением двигателей называют импульсными или многоимпульсными (при многократном включении двигателей). Такие полеты осуществляются с помощью химических тепловых двигателей, а в будущем будут проводиться и с ядерными тепловыми двигателями. Ускорения, сообщаемые такими двигателями, обычно в несколько раз превышают ускорение силы тяжести на Земле g=9,8 м/с2. Но разрабатываются и уже испытывались в космосе действующие совершенно иначе электрические ракетные двигатели, различные типы которых могут сообщать небольшие ускорения - от 10-5 до 10-3 g. Такие двигатели не могут обеспечить старт космического корабля с Земли, но, работая непрерывно в течение месяцев и лет, они обеспечат перелет его с орбиты вокруг Земли на орбиту вокруг любой планеты. С помощью электрических кораблей можно будет в течение нескольких недель поднять большие грузы (например, солнечную электростанцию массой в десятки тысяч тонн) по спиралеобразной траектории с низкой околоземной орбиты на стационарную (высота над поверхностью Земли - 35 800 км); за месяц доставить грузы на окололунную орбиту, чтобы затем постепенно с помощью уже химических ракет опустить их на поверхность Луны; отправить на околомарсианскую орбиту запас топлива.
Рис. 1. Траектория перелета космического аппарата 'Вояд-жер-2', начавшегося 20 августа 1977 г. Указаны даты встреч с Юпитером, Сатурном, Ураном, Нептуном
Рис. 2. Траектория полета Земля - Юпитер - Солнце
Все более важную роль при определении орбит играет "пертурбационный маневр", использующий для изменения орбиты притяжение встречаемого на пути небесного тела. Так, в 1959 г. автоматическая станция "Луна-3" вернулась к Земле после прохождения вблизи Луны, под действием притяжения которой изменилась ее орбита. Осуществлены или осуществляются перелеты Земля - Венера - Меркурий, Земля - Юпитер - Сатурн - Уран - Нептун (рис. 1), Земля - Венера - комета Галлея (советские станции "Вега"). Рассчитаны и ждут своего осуществления траектории Земля - Юпитер - Солнце (рис. 2), Земля - Венера, Земля - Юпитер, Земля - Юпитер - Плутон, Земля - Сатурн - Юпитер - Земля и еще сотни других траекторий перелетов.
Пассивное вращательное движение космического аппарата может быть предвычислено методами астродинамики. Методы астродинамики используются для стабилизации спутника. Например, медленно поворачивающийся спутник вытянутой формы (типа комплекса "Салют" - "Союз"), будучи предоставлен самому себе, постепенно под действием сил гравитации располагается так, что один его конец при движении по орбите все время направлен к центру Земли (гравитационная стабилизация). Продолговатый спутник с хвостовым оперением стабилизируется в верхней атмосфере в направлении движения (аэродинамическая стабилизация). Простейшим примером активной стабилизации может служить закрутка спутника перед его отделением от последней ступени ракеты-носителя. С помощью миниатюрных двигателей ориентации космический аппарат может быть развернут с весьма высокой точностью (доли секунд дуги) и удерживаться в нужном положении, пока не будут завершены научные измерения или пока не отработает в течение заданного времени бортовая двигательная установка.
Большой вклад в развитие астродинамики внесли советские ученые К. Э. Циолковский, М. В. Келдыш и другие.