При взгляде на блок-схему связи сразу встает фундаментальный вопрос: на какую дальность может стрелять такая информационная пушка? Всякая волна, раз возникнув в среде, распространяется в ней теоретически беспредельно (точнее, "достигает бесконечно удаленных точек с бесконечно малой амплитудой"). Но из опыта мы знаем, что для всякого источника колебаний (звуковых, световых, радио) имеется предельное расстояние, за которым обнаружить его колебания не удается. В чем же дело? Не обманывает ли нас теория?
Для примирения теории с практикой нужно учесть два фактора. Первый: в среде распространения волн происходит хаотическое тепловое движение молекул и, кроме того, на среду воздействует большое число других источников колебаний, что и создает неизбежный шумовой фон самой среды. Второй: любой приемник колебаний имеет всегда свой уровень собственных шумов. (В этом легко убедиться. Включите приемник, отключите антенну и поставьте регуляторы громкости на максимум: вы услышите шум, похожий на шипение примуса. Это и есть его собственный шумовой фон.). При приеме происходит дружное объединение шумов среды и приемника, а результирующий шум и ограничивает фактическую дальность передачи информации.
Если амплитуда колебаний полезного сигнала становится соизмеримой или меньше уровня фона, то утлая ладья сигнала начинает тонуть в бушующем море помех. Сначала ее только изредка заливает водой, но паруса еще чувствуют ветер источника, и ладья держит правильный курс. По мере удаления от источника сигнал слабеет, волны хаоса шума вздымаются все выше, воду не успевают откачивать, паруса рвутся, рушатся мачты, ладья "без руля и ветрил" становится игрушкой волн шума.
Я не ошибусь, если скажу, что история радиотехники наполовину есть не что иное, как борьба за всемерное увеличение дальности плавания нашей ладьи в волнах помех.
Смею заверить читателя, что этот поединок с хаосом шума, продолжающийся и сегодня, не менее романтичен, чем многовековая борьба человека с морской стихией.
Вспоминаю единоборство двух методов передачи сигналов на радиотрассе Хабаровск - Москва.
Новый метод соревновался с известным. Затаив дыхание, мы следили за приемной аппаратурой в Москве: ведь это был первый "выход в свет" нашего дитяти.
Испытательным сигналом были взяты слова из чудесной песни А. К. Толстого:
Колокольчики мои,
Цветики степные!
Что глядите на меня,
Темно-голубые?..
При сильном сигнале оба метода безошибочно печатали эти вдохновенные строки. По мере снижения мощности передатчика в Хабаровске шумы начали захлестывать сигнал. Старый метод стал давать перебои: помехи превращали "цветики" в "светики", "голубые" в "глупые" и т. д. При еще меньшей мощности песня превратилась в абракадабру. А новый метод продолжал успешно печатать с редкими ошибками.
Трудно описать нашу тогдашнюю радость! Вся группа - застенчивые меланхоличные теоретики, видавшие виды инженеры и техники, юные студенты и прошедшие всю войну радисты - все пустились в пляс. Помехам, мелькавшим в осциллографе, показывали языки и строили рожи, обнимались... Аппаратурный зал преобразился не то в высшую точку труднейшей и красивейшей вершины, взятой после упорного штурма, не то в хоккейное поле, где в последнюю минуту ответственного и пока ничейного матча вдруг каждый из игроков забивает по шайбе в ворота противника.
Образы качающих головой темно-голубых цветиков и стрелой летящего лихого коня еще долго не покидали нас. Передача велась с большой скоростью. Буквы пробивались электрическими искрами на тонкой ленте из фольги. За сеанс связи вырастала гора этой ленты.
Контроль ошибок шел вручную. Каждому доставался кусок ленты длиной почти в километр, на которой слова песни повторялись, повторялись, повторялись...
Теперь уже читателю ясно, что именно помехи ставят предел дальности связи и являются врагом номер один всех систем передачи информации. Они стоят и на нашем пути к радиоконтакту и делятся как бы на "внутренних" и "внешних" врагов. Познакомимся с ними поближе.
Начнем с "внутренних" - с собственных шумов. Возьмем любой кусок металла - пластину, провод, нить лампочки накаливания и т. д. Многие из читателей и не подозревают, что все это отличные генераторы электрического шума. Он возникает в результате теплового движения заряженных частиц, всегда имеющихся в проводнике. Ведь электрический ток есть не что иное, как движение заряженных частиц.
Так как они находятся в непрерывном хаотическом движении, то и создают на концах любого проводника шумовое напряжение. Как показал давным-давно Найквист, это напряжение тем больше, чем выше температура и величина электрического сопротивления проводника. Полоса частот, в которой "шумит" любой проводник, очень широка. Она перекрывает весь радиодиапазон. Более того, интенсивность шума в любом частотном участке одинакова. Поэтому такой шум, кроме теплового, еще называют белым.
Как белый свет есть смесь всех возможных цветов, так белый шум есть смесь колебаний всех возможных частот. Поэтому, чем в большей полосе частот мы измеряем шумы данного проводника, тем больше будет его уровень.
Итак, любой проводник в приемном устройстве: антенна, соединительный кабель, контур, сопротивление - является генератором шума.
Казалось бы, есть простой путь уничтожить все эти генераторы шума. Надо лишь охладить их до температуры абсолютного нуля, то есть до минус 273 градусов Цельсия, тепловое движение частиц прекратится и шум исчезнет. Принципиально это верно. Технически же реализовать данную идею удается пока лишь частично.
Наиболее опасны тепловые шумы элементов приемника еще до входа первого усилительного (или преобразовательного) каскада, где сигнал еще очень слаб.
Второй грозный очаг шумовой опасности в приемнике - это сами усилительные и преобразовательные каскады. В них используются такие электронные приборы, как лампы или транзисторы. Усиление или преобразование сигнала в них достигается за счет того, что слабый сигнал управляет более сильным потоком носителей зарядов. Водопроводный кран есть грубая модель таких устройств, - прикладывая небольшие усилия к вентилю, мы успешно управляем мощной водяной струёй.
Вся беда состоит в том, что поток носителей зарядов (в лампах - это поток электронов, в полупроводниках - электронная и "дырочная" проводимость) невозможно сделать строго постоянным. Он колеблется вокруг некоторой средней величины по случайному закону, что, естественно, приводит к непостоянству величины усиливаемого сигнала, или, что то же самое, к появлению шума. По своим характеристикам он близок к тепловому.
Шумы этих двух очагов складываются, и образуется результирующий шум приемного устройства. Анализ поединка сигнала и помех в приемнике, когда много отдельных источников шума, сложен. Поэтому применяют такой "ход конем": реальный приемник заменяют идеальным, в котором нет ни единой шуминки, но на вход этого чудо-приемника включают генератор шума. Его мощность берут такой, чтобы он создавал в нашем бесшумном приемнике такой же шум, какой имел реальный приемник. Следовательно, вынос помех на вход вполне допустим - картина "добра и зла" в приемнике от этого не изменяется.
Рис. 39
Десятки лет напряжение шума приемника измеряли в микровольтах (миллионных долях вольта). Сейчас оказалось более удобным измерять его в градусах шкалы Кельвина. В паспорте приемника так и пишут: температура шумов равна, скажем, 50 градусам по Кельвину. Что же значат слова "температура шумов"? Разве есть горячий и холодный шум? Или, вставив термометр в приемник, можно измерить его шумы?
Дело обстоит значительно проще. Если температура шумов 50 градусов, то, подключив к приемнику сопротивление, равное сопротивлению его входа, и нагрев его до температуры 50 градусов, мы и получим тот самый вынесенный на вход генератор шума в виде шумящего сопротивления. Он будет создавать в приемнике шумы, равные по величине реальным.
Ожесточенная борьба за снижение температуры шумов приемника привела в последнее время к созданию малошумящих приемников. "Ртутный столбик" термометра приемника упал с температуры 1500 - 2000 до 20 - 50 градусов по Кельвину, то есть почти в сто раз. Это достигнуто за счет использования новых принципов усиления и преобразования сигналов и "замораживания" входного каскада приемника до температур, близких к абсолютному нулю.
Один из новых видов усилителей - мазер. Это молекулярный усилитель, который работает на принципах, схожих с работой лазера (мы с ними знакомились в главе второй).
Переходим к врагам внешним. Одним из основных их источников является сумма теплового и синхротронного излучения небесных тел Галактики и Метагалактики.
Это излучение имеет непрерывный спектр, и мощность его падает с уменьшением длины волны. Значит, для уменьшения помех, создаваемых небесным фоном, надо работать на предельно коротких волнах. Но, к сожалению, уменьшение волны приводит к появлению нового вида шумов - квантовых, которые есть следствие дискретной или фотонной структуры потоков излучений.
Эти два фактора приводят к тому, что результирующий шумовой фон неба, о котором мы говорили уже, имеет глубокий минимум.
При волнах короче 3 сантиметров появляются шумы атмосферы. Правда, их можно принципиально исключить, вынося приборы за ее пределы.
Рис. 40
Шумовой фон достигает максимума, когда радиотелескопы смотрят на центр Галактики (там максимальная концентрация магнитного поля и релятивистских электронов), и минимума - при направлении на ее полюс.
Как и внутренние шумы приемника, внешние шумы также измеряют градусами Кельвина.
Направим радиотелескоп на центр Галактики. Приемник при этом будем перестраивать по частоте и измерять уровень фона на его выходе. Мы получим кривую, приведенную на рисунке (при направлении на полюс минимум будет еще глубже).
Я надеюсь, что Жан Эффель не обидится, что его создание - черт - приобрело еще одну специальность - олицетворять злые шумовые силы природы.
Землянам опять повезло. Минимальный чертик хорошо совмещается с радиоокном нашей планеты.
Из кривой следует, что температура фона наименьшая - составляет единицы градусов - в диапазоне волн приблизительно 3 - 10 сантиметров.
Кроме шумового фона, в радиовселенной много так называемых дискретных источников излучения. Они дают всплески радиоизлучения в отдельных точках неба. Такая помеха попадает в горло приемника, если антенна направлена на этот источник. Тогда уровень внешних помех может резко возрасти (при сильном дискретном источнике). Но это отдельные, редкие точки на небосводе, и их можно в большинстве случаев избежать, изменяя направление антенны или настройку приемника.
Рис. 41
Система связи без помех - нереальна. В ней действует только сигнал. Учесть же помехи можно введением в эту схему генераторов помех, которые выбираются так, чтобы создаваемый ими электрический хаос соответствовал реальному в рассматриваемой системе связи.