НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

Гигант Юпитер и окольцованный Сатурн

За орбитой Марса величественно и не -спеша обращаются вокруг Солнца гиганты среди планет - огромные Юпитер и Сатурн. По диаметру Юпитер больше Земли в 13, Сатурн же - «только» в девять раз, но зато природа окольцевала его огромным плоским кольцом, которому, может быть, завидуют все остальные планеты. Но об этом кольце поговорим немного позже. Если хотите, можете сами подсчитать, во сколько же раз поверхность и объем Юпитера и Сатурна больше земных. Если же не хотите, то посмотрите в любую таблицу данных о планетах. Из нее вы узнаете более точно и периоды обращения планет вокруг Солнца, а я скажу только, что период обращения Юпитера около 12, а Сатурна около 30 лет - движутся они действительно не спеша. Но не спешат они не потому, что солидны (ведь Юпитер в 300 раз массивнее Земли), а потому, что эти периоды определяются их расстоянием от Солнца и массой последнего - по закону тяготения.

Известный французский популяризатор Камилл Фламмарион в прошлом веке поражал своих читателей точностью, с которой известны расстояния или периоды обращения планет и т. п. Но я убедился, что читатель часто вовсе не поражался этой точности классической астрономии. Когда он узнавал, что, скажем, расстояние Земли от Солнца известно было с возможной ошибкой в 500 000 км, то он восклицал: «Нечего сказать - хороша точность!» Так говорят в тех случаях, когда не представляют себе, что всегда существеннее относительная, а не абсолютная точность. 500 000 км от расстояния Земли до Солнца составляет всего лишь 0,3%. С такой точностью вы едва ли измерите длину своей комнаты, хотя сделать это легче, чем установить наше удаление от Солнца...

Между прочим, в последние годы расстояние от Земли до Солнца, а это - единица измерения всех расстояний в Солнечной системе, - найдено с точностью ±0,001% по результатам радиолокационных измерений удаленности соседних с Землей планет.

В этой книге я не стремлюсь утомлять читателя точными числами (когда они известны!), которые все равно не запомнить. Для них есть справочные таблицы. Поразительными сейчас являются не точность данных наземной астрономии, а часто очень еще неточные данные, добытые астрофизикой о явлениях в природе, о существовании которых иногда нельзя было и догадаться, которые нельзя было и придумать. К концу книги примеры этого будут все чаще.

К группе планет-гигантов относятся и Уран с Нептуном, хотя они значительно меньше Сатурна. У всех четырех планет средняя плотность мала - близка к плотности воды, а у Сатурна даже ниже (0,7).

Исследования сплюснутости этих планет у полюсов вследствие вращения и анализ влияния сплюснутости планеты на движение спутников приводят к выводу, что в них масса сосредоточена к центру гораздо сильнее, чем у планет типа Земли. Достаточно плотное ядро планет типа Юпитера содержит большую часть массы планеты. Видимый же нами объем их определяется поверхностью непрозрачной обширной атмосферы, сжатой внизу давлением вышележащих слоев до состояния, подобного состоянию твердого тела. Когда мы на этот огромный видимый объем делим известную нам массу планет, то и получаем среднюю их плотность, которая нас поражает своей малостью.

В последнее время расчеты ряда астрофизиков приводят к выводу, что легчайшие газы, водород и гелий, составляют в Юпитере до 90% по массе и что в центре температура планеты может достигать 100 000°. В то же время снаружи вследствие условий теплопроводности Юпитер может быть таким холодным, каким мы его наблюдаем. При такой картине большая плотность ядра Юпитера обусловлена не столько тяжелыми химическими элементами, сколько сильно сжатым водородом.

Все планеты-гиганты окружены очень плотными облачными атмосферами, состоящими в основном из водорода и гелия с небольшой примесью метана и аммиака. Впрочем, последний вымерзает тем больше, чем планета дальше от Солнца, т. е. чем на ней холоднее.

Присутствие аммиака и метана на больших планетах объясняется низкой температурой. На Земле эти газы тоже образуются, но они у нас слишком скоро разлагаются на составные части солнечным светом, который на Земле более интенсивен. Кроме того, для образования метана и аммиака в большом количестве необходим свободный водород, а атомов его в атмосфере Земли почти нет. Между тем большие планеты с самого начала своего образования удерживали свободный водород, несмотря на его летучесть. Это обеспечивалось и низкой температурой и большой силой тяжести у их поверхности.

Все четыре планеты-гиганта вращаются быстрее остальных, особенно Юпитер. Более того, облака их на разных широтах вращаются с разной скоростью. Вращение их быстрее всего на экваторе (у Юпитера период 9 час. 50 мин.). Хотя у планет-гигантов и плотность мала, и вращение не как у твердого тела, но это не значит, что сами эти планеты огненно-жидкие, как некогда допускали (тогда, когда физика еще мало помогала астрономам).

Когда стало возможно измерять температуры планет по их инфракрасному излучению, то оказалось, что температуры планет-гигантов очень низки и допущение их огненно-жидкого состояния пришлось оставить. Температура Юпитера оказалась около -140°, а Сатурна около -155°. В 1963 г. при помощи 5-метрового телескопа удалось измерить даже распределение температуры по диску Юпитера. Неожиданно оказалось, что эта температура везде практически одинакова, но темные полосы облаков теплее, чем светлые. В центре диска температура -141°,5, а на утреннем и вечернем краю и даже вблизи полюсов ниже всего лишь на несколько градусов. В 1962 г. дважды наблюдалось явление, пока еще не объясненное с уверенностью. В том месте, где по облакам планеты бежала тень спутника (и где на Юпитере происходило затмение Солнца), температура оказалась на 50° выше, чем по соседству. Но уже через четверть часа после схождения тени температура падала до нормы. Позднее другие наблюдатели этого явления не обнаружили, поэтому оно требует дальнейшего подтверждения. Сравнение измерений излучения тепла Юпитера с расчетом энергии, получаемой им от Солнца, показывает превышение первого над вторым. Приходится заключить, что Юпитер имеет собственные источники тепла.

Большое пятно красноватого цвета, наблюдающееся по крайней мере 80 лет на Юпитере, когда-то считалось озером раскаленной лавы на его твердой поверхности. Знаменитый русский астрофизик Ф. А. Бредихин еще в 70-х годах прошлого века подробно изучал Красное пятно. Предполагалось, что идущие от него воздушные течения разгоняют над ним облака и делают его видимым. Теперь можно думать, что оно состоит из какого-то крайне легкого вещества, но твердого, а не жидкого, и поддерживаемого достаточно плотной атмосферой Юпитера на большой высоте над его твердой поверхностью. Размер Красного пятна 10x45 тыс. км. На его твердость указывает то, что оно как нечто целое перемещается по долготе. Все же, однако, Красное пятно Юпитера остается загадкой.

Мы упоминали, что скорость вращения облаков Юпитера уменьшается на несколько минут в сутки в умеренных широтах по сравнению с экваториальными.

Недавно выяснилось, что по временам скорость вращения, определяемая по наклону в спектре полос поглощения аммиака, отличается километра на два в секунду от скорости, определяемой по наклону фраунгоферовых линий. Последние производятся солнечным светом, отраженным от облаков Юпитера. Аммиачные пары расположены в более высоком слое атмосферы Юпитера. Если это так, то, значит, в верхних слоях по временам дуют ветры, как недавно обнаружено в земной стратосфере, но со скоростью в 40 раз большей, чем в нашей тропосфере. Не исключена, впрочем, возможность, что различие в наклоне разных линий спектра Юпитера вызвано не эффектом Доплера, а какой-либо иной причиной.

У поверхности облачного слоя Юпитера атмосферное давление составляет 1-2 атмосферы, а плотность раз в пять меньше, чем у поверхности Земли (как у нас на высоте около 10 км). Облака Юпитера, вытянутые параллельно его экватору вследствие быстрого вращения планеты, легко видны в небольшой телескоп, как и значительное сжатие планеты у полюсов, также вызванное быстротой вращения Юпитера. Вероятно, в составе атмосферы Юпитера есть и водяные пары и более сложные молекулы, в частности, ацетилен. В полосах Юпитера постоянно происходят изменения и только Красное пятно (за последние десятилетия утратившее свой красный цвет) является единственной постоянной деталью на его диске.

Из наблюдений при помощи межпланетных станций «Пионер-10» в 1973 г. и «Пионер-11» в 1974 г. следует, что у Юпитера есть водородная и гелиевая корона. Верхний слой облаков в атмосфере его состоит из перистых облаков аммиака. По данным, полученным еще из наземных наблюдений, Юпитер излучает тепла в 2 1/2 раза больше, чем он ее получает от Солнца.

От Юпитера к нам непрерывно идет его радиоизлучение переменной интенсивности, иногда дающее «всплески». Оно вызывается, по-видимому, плазменными волнами в его ионосфере. Обнаружилось, что эти радиовсплески связаны с положением на орбите одного из спутников Юпитера, называемого Ио. Ио сам обладает магнитным полем и ионосферой, взаимодействующими с ионосферой Юпитера. Максимум излучения соответствует моментам восхода и захода Ио для центра диска планеты. Еще раньше было обнаружено, что искусственные спутники Земли производят заметную ионизацию в ее магнитосфере. Возможно, что в системе Юпитера наблюдается аналогичное явление и резкое повышение электронной концентрации сопровождается радиоизлучением. Это одно из свидетельств существования у Юпитера мощного магнитного поля и связанного с ним радиационного пояса.

Данные о магнитосфере Юпитера уточнены после запуска к нему межпланетной станции США «Пионер-10», стартовавшей в марте 1972 г. и прошедшей на расстоянии от поверхности Юпитера, в 130 000 км, в декабре 1973 г.

«Пионер-11» был запущен позже и встретился с Юпитером в декабре 1974 г., а затем он проследовал к орбите Сатурна. Магнитное поле Юпитера противостоит межпланетному магнитному полю, создаваемому солнечным ветром. На их стыке скорость солнечного ветра падает вдвое, до 200 км/сек, а температура его поднимается от 10 000° до миллиона градусов. В результате подтвердилось, что Юпитер окружен мощными поясами частиц высокой энергии, в 10 000 раз более интенсивными, чем вокруг Земли. Эти пояса простираются до 2 1/2 млн. км. Вместе с тем приборы «Пионера-10» установили, что в атмосфере Юпитера содержится около 27% гелия. Он был обнаружен по свечению линий его спектра в наружных слоях атмосферы.

Наличие магнитных полей у Земли и у быстрее вращающегося Юпитера и отсутствие его у медленно вращающихся Луны, Венеры и Меркурия подтверждает гипотезу, что магнитное поле вызывается вращением и потоками в жидких ядрах планет, у которых они существуют.

Об атмосфере Сатурна и вообще о его природе можно сказать то же, что о Юпитере, с тем отличием, что он меньше изучен. Полосы на его диске малозаметны и радиоизлучение его еще не обнаружено.

Юпитер окружен свитой из 12 спутников. Среди них четыре наибольших резко выделяются среди остальных. Их открыл еще Галилей и вы их можете увидеть даже в бинокль. Все они обращаются, «повернувшись» к Юпитеру одной и той же стороной, как Луна относительно Земли, и по той же причине. Их вращение было заторможено приливным трением.

Из этих четырех спутников наибольшие III (Ганимед) и IV (Каллисто) - они побольше, чем Меркурий. Спутники I и II, Ио и Европа, раза в полтора меньше. По временам они проходят между Юпитером и Солнцем, и тогда их тени скользят по облакам планеты, а иногда они скрываются в тени Юпитера. Эти затмения галилеевых спутников Юпитера играли в прошлом большую роль. Наблюдая их, Рёмер в Дании в 1675 г. впервые установил конечность скорости распространения света и ее величину. Кроме того, сравнение моментов затмений, предвычисленных по гринвичскому времени, с моментами их, наблюденными по местному времени, долго служили для определения географических долгот местностей.

Диски спутников едва различимы в сильнейшие телескопы. Судя по спектру, у них нет атмосфер. Два наибольших спутника по своей массе могли бы иметь атмосферы из метана, но их расстояние от Солнца вызывает достаточное их нагревание, чтобы такие атмосферы не могли вокруг них удержаться.

У Ганимеда при таком же размере, как у Каллисто, яркость почти втрое больше. Это может быть вызвано тем, что он покрыт слоем белой, замерзшей углекислоты или других газов. Это подобие снега, которым перекладывают мороженое, - бывшая углекислая атмосфера Ганимеда, которую он был способен удержать. Лакомясь мороженым, вспоминайте иногда о далеком Ганимеде, стынущем в морозной дали межпланетных пространств.

Массы главных спутников, определенные по их взаимным возмущениям, известны не точно. Но если они не очень ошибочны, то плотности их невелики, а у Каллисто плотность в среднем получается даже 0,6. Возможно, что он состоит из замерзших газов. Замерзшие газы, по-видимому, покрывают поверхность и других спутников, так как они отражают солнечный свет гораздо л^чше, чем Луна.

С другой стороны, из данных, полученных «Пионером-10» о массе спутников, оказалось, что плотность спутника Ио равна 3,5 г/см3 (как у Луны).

Остальные 8 спутников Юпитера светятся в 1000, и даже в 100 000 раз слабее, чем главные спутники, и видны лишь на фотографиях, полученных сильнейшими телескопами. Это очень небольшие тела, и возможно, что они, как и спутники Марса, являлись в прошлом астероидами, которые «неосторожно» приблизились к могучему Юпитеру и были захвачены им в плен. В пользу такой возможности говорит и их большое расстояние от планеты и то, что три из них обращаются в направлении, обратном движению остальных спутников. Движение восьмого спутника неустойчиво. Возмущение со стороны Солнца сильно меняет его орбиту и за ним трудно следить, не подсчитав заранее, где же он должен быть виден в данное время.

Свита девяти спутников Сатурна несколько малочисленнее свиты Юпитера, но его главный спутник, Титан, немного больше главных спутников Юпитера и другие не так малы, как остальные спутники Юпитера. При этом Феба имеет обратное движение, а Титан, единственный из спутников в Солнечной системе, окружен атмосферой, состоящей из метана, быть может, с примесью аммиака.

Атмосферы Ио и Ганимеда сравнительно с ней ничтожны. Видимая нами яркость Япета меняется в пять раз, потому что одна его сторона гораздо светлее, чем другая. Все яркие спутники Сатурна, кроме Титана, обращаются, будучи повернуты к нему одной и той же стороной, как показали измерения их блеска в 1971 г.

предыдущая главасодержаниеследующая глава










© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://12apr.su/ 'Библиотека по астрономии и космонавтике'

Рейтинг@Mail.ru Rambler s Top100